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Abstract

This paper studies the nonparametric identification of the first-price auction

model with risk averse bidders within the private value paradigm. We show that

the benchmark model is nonindentified in general from observed bids. We derive the

restrictions imposed by the model on observables and show that these restrictions are

quite weak. We then establish the nonparametric identification of the bidders’ utility

function under exclusion restrictions. Our primary exclusion restriction takes the

form of an exogenous bidders’ participation leading to a latent distribution of private

values independent of the number of bidders. The key idea is to exploit that the bid

distribution varies with the number of bidders while the private value distribution

does not. We also characterize all the theoretical restrictions imposed by such an

exclusion restriction on observables to rationalize the model. Though derived for

a benchmark model, our results extend to more general cases such as a binding

reserve price, affiliated private values and asymmetric bidders. Our theoretical

results also extend to observed and unobserved heterogeneity. In particular, we

consider endogenous bidders’ participation with exclusion restrictions and available

instruments that do not affect the bidders’ private value distribution.

Key words: Risk Aversion, Private Value, Nonparametric Identification, Exclusion

Restrictions, Unobserved Heterogeneity

JEL classification: C14, D44



Nonparametric Identification of Risk Aversion in

First-Price Auctions Under Exclusion Restrictions

E. Guerre, I. Perrigne and Q. Vuong

1 Introduction

The empirical and experimental literature suggests that risk aversion is a component

of bidders’ behavior in auctions. See Baldwin (1995), Athey and Levin (2001), Perrigne

(2003) for the former and Cox, Smith and Walker (1988), Goeree, Holt and Palfrey (2002)

and Bajari and Hortacsu (2005) for the latter to name a few.1 With the exception of ex-

perimental studies, risk aversion is quite difficult to assess. The main problem lies in

the identification of the bidders’ utility function. In a companion paper, Campo, Guerre,

Perrigne and Vuong (2007) propose minimal parametric restrictions leading to the semi-

parametric identification of the auction model under a parameterization of the bidders’

utility function and a conditional quantile restriction of the private value distribution.

They show that both parametric restrictions are needed. Based on this result, they derive

an estimator and study its statistical properties.2 In practice, the choice of a paramet-

ric utility function displaying risk aversion may affect the estimated results, yet various

concepts of risk aversion have different implications on economic agents’ behavior. There

is, however, no general agreement on which concept of risk aversion is the most appro-

priate to explain observed phenomena such as in finance through the diversification of

1Using recent structural econometric methods, Bajari and Hortacsu (2005) find that risk aversion

provides the best fit to some experimental data among a set of competing models including learning ones.
2Since risk aversion does not affect bidding in ascending auctions within the private value paradigm,

identification of risk aversion cannot be achieved in ascending auctions. The combination of first-price

sealed-bid and ascending auctions, however, allows to identify nonparametrically the bidders’ utility

function as shown by Lu and Perrigne (2006).
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portfolios, insurance when low risk car drivers tend to buy more insurance than needed,

or in auctions through overbidding.3 A typical controversy is whether risk aversion is

absolute or relative to economic agent’s wealth. As a matter of fact, little is known on the

shape of agents’ utility functions. Several families of utility functions have been developed

to embody some economic properties related to risk aversion. See Gollier (2001) for an

extensive survey on risk aversion. Which family is relevant is an empirical question.

Given the importance of risk aversion in auctions and our ignorance about bidders’

utility functions, we address the nonparametric identification of the latter in this paper.

First, we show that the general model is not identified in general from observed bids. We

then derive the theoretical restrictions imposed by the model on observables and show that

these restrictions are quite weak. In particular, we show that any smooth bid distribution

can be rationalized by a model with general risk aversion. Such a striking result implies

that risk aversion does not impose testable restrictions on bids.

Second, we show that the bidders’ utility function is nonparametrically identified un-

der some exclusion restrictions. Our primary exclusion restriction takes the form of an

exogenous bidders’ participation leading to a latent distribution of private values that is

independent of the number of bidders. Exclusion restrictions are widely used in economet-

rics. A typical example is the use of instrumental variables in labor economics to address

the endogeneity of education in the estimation of the wage equation. Exclusion restric-

tions have also been used in the structural auction literature. Athey and Haile (2002)

and Haile, Hong and Shum (2003) exploit some exclusion restrictions to test for common

values in first-price sealed-bid auctions. Both papers assume exogenous participation to

detect the winner’s curse. In a different framework, Bajari and Hortacsu (2005) use ex-

ogenous participation to estimate an auction model with constant relative risk aversion

from experimental data.4

Third, we consider observed and unobserved heterogeneity. In particular, we extend

our results to a model with endogenous bidders’ participation under exclusion restrictions

and the availability of instruments that do not affect the bidders’ private value distrib-

ution. While considering unobserved heterogeneity affecting both bidders’ participation

3For an empirical analysis of risk aversion in car insurance, see Cohen and Einav (2007).
4Exogenous participation is not necessary to estimate the model in their paper. Such a restriction

avoids the use of a conditional quantile restriction as in Campo, Guerre, Perrigne and Vuong (2007).
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and the latent distribution, Haile, Hong and Shum (2003) also introduce some exoge-

nous variables or instruments independent of the latent distribution but affecting bidders’

participation.

Our nonparametric identification result exploits variations of the bid distribution in the

number of bidders when the latter does not affect the latent private value distribution.

We also characterize all the theoretical restictions on observables implied by such an

exclusion restriction. In particular, we show that the rationalization of the observed

bid distribution involves additional restrictions that the data must satisfy. Though we

consider first a benchmark model with symmetric bidders, independent private values and

no reserve price, our results extend to a binding reserve price, affiliated private values and

asymmetric bidders, whether asymmetry arises from private values and/or heterogenous

preferences. As such, our results apply to a large class of auction models.

The paper is organized as follows. Section 2 presents the benchmark model with

independent private values (IPV) and reviews the existence, uniqueness and smoothness

of the equilibrium strategy. Section 3 is devoted to the identification of the benchmark

model, i.e. whether its structural elements can be uniquely recovered from observed

bids. We show that the model is nonidentified from observed bids. In view of this,

Section 4 exploits exclusion restrictions in the form of an exogenous number of bidders

to achieve nonparametric identification of the bidders’ utility function and private value

distribution. Under such restrictions, we characterize the theoretical restrictions that

observed bids need to satisfy. Section 5 extends our nonidentification and identification

results to a binding reserve price, affiliated private values and asymmetric bidders. Section

6 considers observed and unobserved heterogeneity and presents a general approach for

dealing with the latter. Section 7 concludes. An appendix collects the proofs.

2 The Benchmark Model

This section presents the IPV first-price sealed-bid auction model with risk averse bidders

and properties of its equilibrium strategy. A single and indivisible object is sold through

a first-price sealed-bid auction. Within the IPV paradigm, each bidder knows his own

private value vi for the auctioned object but not other bidders’ private values. There are

I potential bidders with I ∈ I a finite subset of {2, 3, 4, . . .}. Private values are drawn
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independently from a distribution F (·|I), which is absolutely continuous with density

f(·|I) on a support [v(I), v(I)] ⊂ IR+. The distribution F (·|I) and the number of potential

bidders I are assumed to be common knowledge. Let U(·) be the bidders’ von Neuman

Morgenstern (vNM) utility function with U(0) = 0, U ′(·) > 0 and U ′′(·) ≤ 0 thereby

allowing for risk aversion. All bidders are thus identical ex ante and the game is said to

be symmetric. Bidder i then maximizes his expected utility

EΠi = U(vi − bi)Pr(bi ≥ bj, j 6= i) (1)

with respect to his bid bi, where bj is the jth player’s bid. This corresponds to the

most studied case in the auction literature where the quality of the auctioned item is

known and has equivalent monetary value. See Case 1 in Maskin and Riley (1984) and

Krishna (2002).5 In addition, because the scale is irrelevant, we impose the normalization

U(1) = 1. The risk neutral case is obtained when U(·) is the identity function.6

From Maskin and Riley (1984), if a symmetric Bayesian Nash equilibrium strategy

s(·) = s(·, U, F, I) exists, then it is strictly increasing and continuous on [v(I), v(I)] and

differentiable on (v(I), v(I)].7 Thus (1) becomes EΠi = U(vi − bi)F
I−1(s−1(bi)|I), where

s−1(·) denotes the inverse of s(·). Hence, imposing bidder i’s optimal bid bi to be s(vi)

gives the following differential equation

s′(vi) = (I − 1)
f(vi|I)

F (vi|I)
λ(vi − bi) for all vi ∈ (v(I), v(I)], (2)

where λ(·) = U(·)/U ′(·). As shown by Maskin and Riley (1984), the boundary condition

is U [v(I)−s(v(I))] = 0, i.e. s(v(I)) = v(I) because U(0) = 0. Moreover, the second-order

conditions are satisfied.

When the reserve price is nonbinding, existence of a pure equilibrium strategy follows

from Maskin and Riley (2000) and Athey (2001), while its uniqueness is established by

5Maskin and Riley (1984) consider a more general model where the utility of winning is of the form

u(−bi, vi) and the utility of loosing is equal to w(·). Here, u(−bi, vi) = U(vi − bi) and w(0) = U(0) = 0.
6Bidders’ wealth w can be introduced in the model. The expected profit becomes [U(w + vi − bi) −

U(w)]Pr(bi ≥ bj , j 6= i) + U(w). Different wealths wi lead to an asymmetric game if the wis are common

knowledge and to a multisignal game if the wis are private information. See Che and Gale (1998) for a

multisignal auction model with budget constraints.
7Moreover, as noted by Maskin and Riley (1984, Remark 2.3), the only equilibria are symmetric when

F (·) has bounded support, which is assumed below.
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Maskin and Riley (2003) using an argument similar to Lebrun (1999). The main contri-

bution of Theorem 1 below is to derive the smoothness of the equilibrium strategy, which

is used in the next section. Determining the smoothness of the equilibrium strategy is

difficult when the differential equation (2) does not have an explicit solution, which is the

case for general utility functions U(·). This is more so as (2) is known to have a singularity

at v(I) when the reserve price is nonbinding. To address these difficulties we rewrite (2)

as a differential equation in the bid quantile function b(α, I) = s[v(α, I)], where α ∈ [0, 1]

and v(α, I) is the α-quantile of F (·|I). We then view the latter differential equation as

a member of a set (also called flow) of differential equations E(B; t) = 0 parameterized

by t ∈ [0, 1] in an unknown function B(·), where E(B; 1) = 0 corresponds to the general

utility function U(·), while E(B; 0) = 0 corresponds to an appropriate constant relative

risk aversion (CRRA) utility function. See (B.1)–(B.3) in Appendix B. Next, we adopt

a functional approach which exploits the existence, uniqueness, and smoothness of the

equilibrium strategy in the CRRA case, where the solution of (2) is known explicitly. In

particular, our functional approach delivers the existence and uniqueness of the equilib-

rium strategy for a general utility function U(·) by a Continuation Argument Theorem,

thereby providing an alternative proof to those used in the economics literature. More-

over, our framework establishes the smoothness of the equilibrium strategy by an Implicit

Functional Theorem.

We assume that U(·) and F (·|I) belong to UR and FR defined as follows, respectively.

Definition 1: For R ≥ 1, let UR be the set of utility functions U(·) satisfying

(i) U : [0, +∞) → [0, +∞), U(0) = 0 and U(1) = 1,

(ii) U(·) is continuous on [0, +∞), and admits R + 2 continuous derivatives on (0, +∞)

with U ′(·) > 0 and U ′′(·) ≤ 0 on (0, +∞),

(iii) limx↓0 λ(r)(x) is finite for 1 ≤ r ≤ R + 1, where λ(r)(·) is the rth derivative of λ(·).

Conditions (i) and (ii) have been discussed previously. Note that limx↓0 λ(x) = 0 since

U(0) = 0 and U ′(·) is nonincreasing. Thus, from (ii) and (iii) it follows that λ(·) admits

R + 1 continuous derivatives on [0, +∞). These regularity assumptions are weak as they

are satisfied by many vNM utility functions.

Definition 2: For R ≥ 1, let FR be the set of distributions F (·|I), I ∈ I, satisfying

(i) F (·|I) is a c.d.f. with support of the form [v(I), v(I)], where 0 ≤ v(I) < v(I) < +∞,
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(ii) F (·|I) admits R + 1 continuous derivatives on [v(I), v(I)],

(iii) f(·|I) > 0 on [v(I), v(I)].

Altogether (i)–(iii) imply that f(·|I) is bounded away from zero on [v(I), v(I)].

Theorem 1: Let R ≥ 1. Suppose that [U, F ] ∈ UR ×FR, then for each I ∈ I, there exists

a unique (symmetric) equilibrium strategy s(·). Moreover, this strategy satisfies:

(i) ∀v ∈ (v(I), v(I)], s(v) < v with s(v(I)) = v(I),

(ii) ∀v ∈ [v(I), v(I)], s′(v) > 0 with s′(v) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] < 1,

(iii) s(·) admits R + 1 continuous derivatives on [v(I), v(I)].

The proof of Theorem 1 can be found in Appendix B.

3 General Nonidentification Results

In this section we study identification of the structure [U, F ] from observables. We assume

that the number I of bidders is observed, as in a first-price sealed-bid auction with a

nonbinding reserve price. We also assume that the distribution G(·|I) of an equilibrium

bid is known. Thus the identification problem reduces to whether the structure [U, F ] can

be recovered uniquely from the knowledge of (I, G). A related issue is whether any bid

distribution G(·|I) can be rationalized by a structure [U, F ]. Such a question relates to

the possibility of testing the validity of the auction model under consideration.

Following Guerre, Perrigne and Vuong (2000), we express (2) using the distribution

G(·|I) of an equilibrium bid. For every b ∈ [b(I), b(I)] = [v(I), s(v(I))], we have G(b|I) =

F (s−1(b)|I) = F (v|I) with density g(b|I) = f(v|I)/s′(v), where v = s−1(b). Thus (2) can

be written as

1 = (I − 1)
g(bi|I)

G(bi|I)
λ(vi − bi) for all bi ∈ (b(I), b(I)]. (3)

Since U(·) ≥ 0 and U ′′(·) ≤ 0, we have λ′(·) = 1 − U(·)U ′′(·)/U ′2(·) ≥ 1. Thus λ(·) is

strictly increasing. Solving (3) for vi and using b(I) = v(I) with λ−1(0) = 0 give

vi = bi + λ−1

(
1

I − 1

G(bi|I)

g(bi|I)

)
≡ ξ(bi, U, G, I) for all bi ∈ [b(I), b(I)], (4)
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where λ−1(·) denotes the inverse of λ(·). This equation expresses each bidder’s private

value as a function of his corresponding bid, the bid distribution, the number of bidders

and the utility function. Note that ξ(·) is the inverse of the bidding strategy s(·).
The equilibrium bid distribution G(·|I) satisfies some regularity properties implied by

the smoothness of s(·) given in Theorem 1 and the regularity assumptions on [U, F ].

Definition 3: For R ≥ 1 , let GR be the set of distributions G(·|I), I ∈ I, satisfying

(i) G(·|I) is a c.d.f. with support of the form [b(I), b(I)], where 0 ≤ b(I) < b(I) < +∞,

(ii) G(·|I) admits R + 1 continuous derivatives on [b(I), b(I)],

(iii) g(·|I) > 0 on [b(I), b(I)],

(iv) g(·|I) admits R + 1 continuous derivatives on (b(I), b(I)],

(v) limb↓b(I) dr[G(b|I)/g(b|I)]/dbr exists and is finite for r = 1, . . . , R + 1.

The regularity properties (i)–(iii) are similar to those of Definition 2 for F (·|I). They imply

that g(·|I) is bounded away from zero on [b(I), b(I)] and limb↓b G(b|I)/g(b|I) = 0 so that

limb↓b(I) ξ(b, U, G, I) = b(I). Properties (iv) and (v) are specific to the auction model. In

particular, (iv) says that g(·|I) is smoother than f(·|I), extending a similar property noted

by Guerre, Perrigne and Vuong (2000) for the risk neutral model. Combined with (iii)

and (iv), (v) implies that G(·|I)/g(·|I) is R + 1 continuously differentiable on [b(I), b(I)].

The following lemma provides necessary and sufficient conditions for rationalizing a

distribution of observed bids by an IPV auction model with risk aversion. Hereafter, we

say that a distribution is rationalized by an auction model with risk aversion if there exists

a structure [U, F ] whose equilibrium bid distribution is identical to the given distribution.

Lemma 1: Let R ≥ 1, and G(·|I) be the joint distribution of (b1, . . . , bI) conditional

on I ∈ I. There exists an IPV auction model with risk aversion [U, F ] ∈ UR × FR that

rationalizes G(·|·) if and only if

(i) G(b1, . . . , bI |I) =
∏I

i=1 G(bi|I), with G(·|·) ∈ GR,

(ii) ∃λ : IR+ → IR+ with R +1 continuous derivatives on [0, +∞), λ(0) = 0 and λ′(·) ≥ 1

such that ξ′(·) > 0 on [b(I), b(I)], where ξ(b, U, G, I) = b + λ−1 [G(b|I)/((I − 1)g(b|I))] .

Condition (i) is related to the IPV paradigm and requires that bids be i.i.d., where G(·|·)
satisfies the regularity properties of Definition 3. Condition (ii) arises from ξ(·, U, G, I)

being the inverse of the equilibrium strategy, which is strictly increasing for each I ∈ I.8

8As shown in the proof of Lemma 1, if condition (ii) is satisfied, then G(·|I) is rationalized by the
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The next proposition shows that any distribution G(·|·) ∈ GR can be rationalized by

an IPV auction model with a utility function displaying risk aversion.

Proposition 1: Let R ≥ 1. A bid distribution G(·|·) can be rationalized by a risk averse

structure [U, F ] ∈ UR × FR if and only if G(·|·) ∈ GR.

Proposition 1 is striking. It implies that the restriction (ii) in Lemma 1 for rationalizing

a bid distribution with risk averse bidders is redundant. Specifically, our proof indicates

that we can always find a function λ(·) corresponding to a utility function U(·) ∈ UR so

that condition (ii) in Lemma 1 is satisfied whenever G(·|·) ∈ GR. Alternatively, the IPV

auction model with general risk aversion does not impose any restriction on observed bids

beyond their independence and the weak regularity conditions embodied in GR. Thus,

by allowing for risk aversion, one does enlarge the set of rationalizable bid distributions

relative to the risk neutral case studied in Guerre, Perrigne and Vuong (2000).9

A model is a set of structures [U, F ]. Hereafter, a structure [U, F ] is nonidentified if

there exists another structure [Ũ , F̃ ] within the model that leads to the same equilibrium

bid distribution. If no such structure [Ũ , F̃ ] exists for any [U, F ], the model is (globally)

identified. Given the weakness of the restrictions imposed by the model, it is not surprising

that the model with general risk aversion is not identified.

Proposition 2: Let R ≥ 1. Any structure [U, F ] ∈ UR × FR is not identified.

Proposition 2 implies that the auction model with risk averse bidders is nonparametrically

nonidentified. This contrasts with Guerre, Perrigne and Vuong (2000) who show that

the auction model with risk neutral bidders is nonparametrically identified. Thus the

nonidentification of the general risk aversion model UR × FR arises from the unknown

utility function U(·), which is restricted to the identity function under risk neutrality.

In view of this result, one can entertain several strategies to identify the model. A

first natural strategy is to require more data. For instance, the availability of ascending

structure [U, F ], where U(x) = exp
∫ x

1
(1/λ(t))dt and F (·|I) is the distribution of ξ(b, U, G, I) with b ∼

G(·|I). Because λ(x) ∼ λ′(0)x in the neighborhood of 0,
∫ 0

1 (1/λ(t))dt = −∞ so that U(0) = 0, as

required.
9Campo, Guerre, Perrigne and Vuong (2007) show another interesting result: Any distribution G(·|·) ∈

GR can be rationalized by some constant relative or absolute risk aversion model. Thus, allowing for

constant relative or absolute risk aversion can explain any smooth bid distribution.
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auction data allows to identifiy nonparametrically [U, F ] as shown in Lu and Perrigne

(2006). A second strategy is to impose more restrictions on the structure [U, F ] through

a parameterization of U(·) and/or F (·|·). This is pursued in Campo, Guerre, Perrigne

and Vuong (2007) where U(·) and one quantile of F (·|·) are parameterized, which are

minimal parametric assumptions to identify semiparametrically the model. Hereafter, we

exploit another type of restrictions, namely exclusion restrictions, which have been used

extensively in econometrics for identifying demand and supply as well as sample selection

models in labor economics.

4 Nonparametric Identification and Restrictions

We now assume that F (·|·) does not depend on the number I of bidders, which corresponds

to the restriction F (·|I) = F (·). As such, bidders’ participation is exogenous. The

functions U(·) and F (·) satisfy the regularity conditions of Definitions 1 and 2 with R ≥ 1.

The previous definitions and equations defining the model need to be revised accordingly

with F (·) and f(·) defined on support [v, v], while the bid distribution G(·|I) still depends

on I through s(·, U, F, I) but its support is now [v, s(v)], where the upper bound depends

implicitly on I. The key idea of our nonparametric identification result is to exploit

variations in the quantiles of the bid distribution with the number of bidders, while the

corresponding quantiles of the private value distribution remain the same. Our result

relies on a property of the equilibrium strategy, namely that s(·) is increasing in bidders’

participation. In simple terms, increased competition renders bidding more aggressive.10

Let I2 > I1 ≥ 2 be two different numbers of bidders. We use the index j = 1, 2 to refer

to the level of competition. Because the equilibrium strategy defined in (2) varies with the

number of bidders, the bid distribution will also vary with the number of bidders giving

sj(·) and Gj(·) ≡ G(·|Ij). Though the lower bound of the bid distribution remains the

same because of the boundary condition, the upper bound bj varies with competition. The

next lemma gives some lower and upper bounds for each equilibrium strategy in terms of

the other equilibrium strategy. In particular, it establishes that the equilibrium strategy

strictly increases in the number of bidders. As far as we know, the latter property was

10Identification of the bidders’ utility function when the equilibrium strategies are nonincreasing in

competition is discussed in Section 5.4.
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obtained for the risk neutral case and the CRRA case, but not when risk aversion takes

the general form U(·).11

Lemma 2: Under the previous assumptions, we have

I1 − 1

I2 − 1
s2(v) +

I2 − I1

I2 − 1
v < s1(v) < s2(v) <

I2 − 1

I1 − 1
s1(v) +

I1 − I2

I1 − 1
v

for any v ∈ (v, v].

The preceding lemma provides some testable implications in terms of stochastic dom-

inance between the observed equilibrium bid distributions as well as their quantiles. Let

G1(·) ≺b G2(·) denote that the distribution G1(·) is strictly (first-order) stochastically

dominated by G2(·) except at the common lower bound b of their supports. That is,

G1(b) > G2(b) for any b ∈ (b, b1], where the support of Gj(·) is [b, bj], which is a compact

subset with nonempty interior of [0,∞). For j = 1, 2, let bj(α) denote the α-quantile of

the equilibrium bid distribution Gj(·), i.e. Gj[bj(α)] = α for α ∈ [0, 1]. Because bj = sj(v)

where sj(·) is strictly increasing on [v, v], bj(α) = sj[v(α)], where v(α) is the α-quantile

of F (·). Hence, from Lemma 2 the quantiles of G1(·) and G2(·) satisfy

I1 − 1

I2 − 1
b2(α) +

I2 − I1

I2 − 1
b < b1(α) < b2(α) <

I2 − 1

I1 − 1
b1(α) +

I1 − I2

I1 − 1
b (5)

for any α ∈ [0, 1]. Equivalently, let Gjk(·) denote the distribution of [(Ik − 1)bj + (Ij −
Ik)b]/[Ij − 1], where j, k = 1, 2, and bj = sj(v).12 Thus, the lower bound of the support

of Gjk(·) is b and we have G21(·) ≺b G1(·) ≺b G2(·) ≺b G12(·).
When the number I of bidders can take more than two values, the previous results

imply several testable stochastic dominance relations among the observed bid distributions

associated with the different values for I. Several of them are actually redundant. For

instance, suppose that I ∈ [I, I] with 2 ≤ I < I < ∞. The above implies that there are

4[1 + 2 + . . . + (I − I)] = 2(I − I)(I − I + 1) stochastic dominance relations. The next

corollary shows that there are at most 2(I − I + 1) relevant relations.13

11Only the middle inequality will be used for establishing the nonparametric identification of [U(·), F (·)].
12When j = k, Gjk = Gj(·).
13See Barrett and Donald (2003) for consistent tests of stochastic dominance.
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Corollary 1: Suppose that I ∈ I ≡ [I, I] with 2 ≤ I < I. Under the previous assump-

tions, the quantiles b(α, I) of the equilibrium bid distribution G(·|I) satisfy

max
{
b(α, I−1),

I−1

I
b(α, I+1)+

1

I
b
}

<b(α, I)<min
{
b(α, I+1),

I−1

I−2
b(α, I−1)− 1

I−2
b
}

for any α ∈ (0, 1] and any I ∈ [I, I].14 Equivalently, let b(I) denote the equilibrium

bid with I bidders. Let GI(·) denote the distribution of the maximum of b(I − 1) and

[(I − 1)b(I + 1) + b]/I and GI(·) denote the distribution of the minimum of b(I + 1) and

[(I − 1)b(I − 1) − b]/(I − 2). Hence, GI(·) ≺b G(·|I) ≺b GI(·), for any I ∈ [I, I].

Given two different numbers of bidders I2 > I1, we now turn to the nonparametric

identification of [U(·), F (·)] or equivalently [λ(·), F (·)] as U(x) = exp
∫ x
1 1/λ(t)dt using

the normalization U(1) = 1. Specifically, our proof is constructive and shows that the

inverse function λ−1(·), which exists because λ(·) is strictly increasing on [0, +∞), is

nonparametrically identified on the range R1 of the function R1(α), where α ∈ [0, 1] and

Rj(α) =
1

Ij − 1

α

gj[bj(α)]
(6)

for j = 1, 2. Note that the range Rj of Rj(·) is of the form [0, rj] with 0 < rj < ∞
because gj(·) is bounded away from zero and continuous on [0, bj] by Definition 3 and

Lemma 1. Moreover, note that Rj(α) = λ[vj(α) − sj(v(α))] from (4). Thus, identifying

nonparametrically λ−1(·) on Rj is equivalent to identifying nonparametrically λ(·) on the

range of the markdown/rent v − sj(v), where v ∈ [v, v]. Because s1(·) < s2(·) on (v, v] by

Lemma 2, we have R1(·) > R2(·) on (0, 1]. Thus, r2 < r1 so that R2 is strictly included in

R1. Hence, the risk aversion function λ(·) is identified nonparametrically on the largest

set of possible markdowns [0, maxv∈[v,v] v−s1(v)].15 The next proposition provides explicit

expressions for λ(·) and F (·).

Proposition 3: Under the previous assumptions, λ−1(·) is identified nonparametrically

on R1. Specifically, λ−1(0) = 0 and for any u0 ∈ R1 \ {0}, λ−1(·) is given by

λ−1(u0) =
+∞∑

t=0

∆b(αt),

14Obviously, b(·, I − 1) is dropped when I = I , while b(·, I + 1) is dropped when I = I .
15In general, maxv∈[v,v] v−sj(v) 6= v−sj(v). On the other hand, if the markdown v−sj(v) is increasing

in v, then maxv∈[v,v] v − sj(v) = v − sj(v). Moreover, Rj(·) would be increasing in α and rj = Rj(1).
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where ∆b(α) = b2(α) − b1(α), and the sequence {αt} is strictly decreasing with 0 <

αt ≤ 1 satisfying the nonlinear recursive relation R1(αt) = R2(αt−1) with initial condi-

tion R1(α0) = u0. Moreover, F (·) is identified nonparametrically on [v, v] with F (·) =

Gj[ξ
−1
j (·)] for j = 1, 2.

The sequence {αt} is not necessarly unique. Proposition 3 explains how to construct

such a sequence recursively. The key idea is to use the invariance of the quantile of the

private value distribution v(α) for two different numbers of bidders I1 and I2. Specifically,

using (4) leads to the compatibility condition λ−1[R1(α)] = λ−1[R2(α)] + ∆b(α), where

∆b(α) > 0 by Lemma 2. Because R1(0) = 0 and R1(·) > R2(·) on (0, 1], the continuity

of R1(·) implies that there exists a value α̃ such that α̃ < α and R1(α̃) = R2(α), which

can be used to rewrite the preceding compatibility condition. But the latter also holds

at α̃. Continuing the same exercise gives the sequence of values αt. We show that there

exists at least one such sequence {αt}. When R1(·) is strictly increasing, i.e. when the

markdown or bidders’ rent with I1 bidders is strictly increasing in v, such a sequence

is unique. When R1(·) is not strictly increasing, the sequence {αt} may not be unique,

but all such sequences must lead to the same value for
∑∞

t=0 ∆b(αt), which then defines

λ−1(u0) uniquely.

The construction of such a sequence is illustrated in Figure 1. Figure 1 displays the

equilibrium strategies s1(·) < s2(·). For α0 ∈ (0, 1], consider the α0-quantile v(α0) of F (·).
The markdown v(α0)−b1(α0) is the sum of ∆b(α0), which is known and λ−1[R2(α0)], which

is unknown. The latter is equal to the markdown v(α1) − b1(α1), which is also the sum

of ∆b(α1) and λ−1[R2(α1)]. Continuing this construction gives the sequence {αt} and

establishes the unknown component λ−1[R2(α0)] as the infinite series of known differences

in bid quantiles ∆(αt).

An important related question is to characterize all the restrictions on the observed

equilibrium bid distributions that arise from the independence of the private value dis-

tribution F (·) on the number I of bidders. In particular, it is useful to assess whether

the observed bid distributions, which typically vary with the number I of bidders, can

be rationalized by a structure [U(·), F (·)] that is independent of I. In other words, these

restrictions allow to test the validity of the model and its assumptions. Violation of one

of these restrictions leads to reject the model for explaining the observed bids. In partic-
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ular, it could mean that the exogeneity of bidders’ participation is not justified. Lemma

3 provides such restrictions when I takes two different values I2 > I1.

Lemma 3: Let I = {I1, I2} with I1 < I2. Let Gj(·, . . . , ·) be the joint distribution of

(b1, . . . , bIj
), j = 1, 2. The equilibrium bid distributions Gj(·), j = 1, 2, are rationalized

by a structure [U(·), F (·)] independent of I if and only if

(i) For each j = 1, 2, Gj(b1, . . . , bIj
) =

∏Ij

i=1 Gj(bi), where Gj(·) = G(·|Ij) with support of

the form [b, bj] and {G(·|I); I ∈ I} ∈ GR,

(ii) The α-quantiles of G1(·) and G2(·) satisfy b1(α) < b2(α) for α ∈ (0, 1], i.e. G1(·) ≺b

G2(·),
(iii) ∃λ(·) : IR+ → IR+ with R + 1 continuous derivatives on [0, +∞), λ(0) = 0 and

λ′(·) ≥ 1 such that

(a) the compatibility condition is satisfied for any α ∈ [0, 1], namely,

b2(α) + λ−1

(
1

I2 − 1

α

g2(b2(α))

)
= b1(α) + λ−1

(
1

I1 − 1

α

g1(b1(α))

)
, (7)

(b) for Ij ∈ I, ξ′j(·) > 0 on [b, bj], where ξj(b) = b + λ−1[Gj(b)/((Ij − 1)gj(b))].

Unlike Lemma 2, which only provides some (testable) implications, Lemma 3 charac-

terizes all the theoretical restrictions imposed by the model with an exogenous bidders’

participation. Relative to the general case of Section 3 in which F (·) can vary with I, the

set of bid distributions that can be rationalized is much reduced because of the restric-

tions (ii) and (iii)(a). Indeed, Lemma 1 implies that any distribution Gj(·) ∈ GR can be

rationalized by a structure [U(·), F (·|Ij)], which is not identified. Thus, these additional

restrictions help in identifying nonparametrically the structure [U, F ].16 As in Corollary 1,

Lemma 3 can be extended straightforwardly to the case where I ∈ I ≡ [I, I]. Specifically,

(i) and (iii)-(b) hold, while (ii) and (iii)-(a) still hold for all pairs (Ij, Ik) ∈ I, k 6= j.

5 Extensions

This section extends our results to a binding reserve price, affiliated private values and

asymmetric biddders in private values and/or preferences. Except for the first part of

16The above compatibility conditions are similar in spirit to the ones used to identify the model with

risk aversion and heterogenous preferences. See Campo, Guerre, Perrigne and Vuong (2007).
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Proposition 7, we do not provide formal proofs of Propositions 4–7 though we indicate

how they can be established in the text.

5.1 Binding Reserve Price

A binding reserve price, i.e. p0 > v, introduces a truncation in the observed bid distribu-

tion as only the I∗ bidders who have a value above p0 will bid at the auction. Let G∗(·|I)

be the truncated bid distribution on [p0, b(I)]. We observe I∗ the number of active bid-

ders, I∗ ≤ I, I ∈ I. Because G∗(b∗|I) = [F (v|I)−F (p0|I)]/[1−F (p0|I)] for b∗ ∈ [p0, b(I)],

elementary algebra gives the following inverse equilibrium strategy

v = s−1(b∗) = b∗+λ−1

(
1

I−1

G∗(b∗|I)

g∗
j (b|I)

+
1

I−1

1

g∗(b∗|I)

F (p0|I)

1−F (p0|I)

)

≡ ξ(b∗, U, G∗, I, F (p0|I)). (8)

Definitions 1, 2 and 3 remain the same with the exception that p0 replaces b(I) in De-

finition 3. Moreover, because limb↓p0 g∗(b|I) = +∞ as s′(p0) = 0 from (2), we allow

derivatives and limits to be infinite at p0 in Definition 3.17 Given that I∗ is Binomial dis-

tributed with parameters [I, 1−F (p0|I)], I and F (p0|I) are identified. This identification

applies on subsets of auctions.

Proposition 4: Any structure [U, F ] ∈ UR × FR with a binding reserve price is not

identified. On the other hand, the structure [U, F ] with the exclusion restriction F (·|I) =

F (·) is identified. Namely, U(·) is identified on [0, maxv∈[v,v] v − s1(v)], while F (·) is

identified on [p0, v].

The observed bid distribution G∗(·, . . . , ·) is rationalized if only if Lemma 1 is satisfied with

GR and ξ(·) as defined above. From this rationalization result, any G∗(·|I) ∈ GR, I ∈ I
can be rationalized by a risk averse structure [U, F ] ∈ UR ×FR. It is then straightforward

to show that the structure [U, F ] ∈ UR ×FR is not identified.

Under the exogeneity of the number of bidders, we assume that we identify at least

two levels of potential bidders I1 < I2. Let G∗
j(·) be the truncated bid distribution on

17To avoid infinite derivatives/limits at p0, we can consider the bid transformation used in Guerre,

Perrigne and Vuong (2000, Section 4), in which case rationalization and identification are based on the

density of the transformed bids.
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[p0, bj]. Note that Lemma 2 still holds with a binding reserve price as the latter simply

reduces the shading relative to the case with no reserve price. In view of (8), the function

Rj(α) becomes

Rj(α) =
1

Ij − 1

1

g∗
j [b

∗
j(α)]

(
α +

F (p0)

1 − F (p0)

)
,

for j = 1, 2. Note that Rj(α) differs from (6) by the additional term F (p0)/(1 − F (p0)).

As before, the number of potential bidders Ij and F (p0) are identified from the distri-

bution of the number of actual bidders. The problem reduces to identifying λ−1(·) and

F (·) on [0, r1] and [p0, v], respectively. A simple extension of Proposition 3 shows that

[λ−1(·), F (·)] is nonparametrically identified on these intervals using the quantiles b∗j(α)

of G∗
j(·). Similarly, Lemma 3 can be readily adapted.

5.2 Affiliated Private Values

The vector (v1, . . . , vI) is distributed as F (·, . . . , ·|I), which is exchangeable in its I ar-

guments, affiliated and defined on [v(I), v(I)]I . We follow the notations of Li, Perrigne

and Vuong (2002). Let GBi|bi
(bi|bi, I) be the probability that i has a bid larger than all

his opponents conditional on his bid bi with Bi = maxk 6=i bk and bi = s(vi). Without loss

of generality, we can consider GB1|b1(·|·, I) as all bidders are symmetric. To simplify the

notations, we omit the index 1. The inverse equilibrium strategy becomes

v = s−1(b) = b + λ−1

(
GB|b(b|b, I)

gB|b(b|b, I)

)
≡ ξ(b, U,G, I) for all b ∈ [b(I), b(I)] (9)

with the joint bid distribution G(·, . . . , ·|I). Definitions 1 and 2 remain the same ex-

cept that F (·, . . . , ·|I) is R + I continuously differentiable following Li, Perrigne and

Vuong (2000, 2002). Note that GB|b(·| · |I)/gB|b(·| · |I) = GB×b(·, ·|I)/gBb(·, ·|I), where

GB×b(·, ·|I) ≡ ∂GBb(·, ·|I)/∂b and gBb(·, ·|I) are the b-derivative of the joint c.d.f. and

the joint density of (B, b), respectively. Let GR be the set of exchangeable and affiliated

distributions {G(·, . . . , ·|I), I ∈ I} with R continuously differentiable densities such that

GB×b(b, b|I)/gBb(b, b|I) is R + 1 continuously differentiable in b ∈ [b(I), b(I)] and strictly

positive on (b(I), b(I)].

Proposition 5:Any structure [U, F ] ∈ UR×FR with affiliated values is not identified. On

the other hand, the structure [U, F ] with the exclusion restriction F (·, . . . , ·|I) = F (·, . . . , ·)
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is identified. Namely, U(·) is identified on [0, maxv∈[v,v] v − s1(v)], while F (·, . . . , ·) is

identified on [v, v]I.

The observed bid distribution G(·, . . . , ·|·) is rationalized if and only Lemma 1 is satisfied

with GR and ξ(·) as defined above. From this rationalization result, any G(·, . . . , ·|·) ∈ GR

can be rationalized by some risk averse structure [U, F ] ∈ UR×FR. We can then show that

the structure [U, F ] ∈ UR×FR is not identified using a similar argument as in Proposition

2, where G(·|I)/[(I − 1)g(·|I)] is replaced by GB×b(·, ·|I)/gBb(·, ·|I) in view of (4) and (9).

Under two competitive environments I1 < I2 and exogenous bidders’ participation,

the vector (v1, . . . , vIj
) is distributed as Fj(·, . . . , ·), which is exchangeable in its Ij argu-

ments and affiliated. Moreover, as participation is exogenous, F1(·, . . . , ·) and F2(·, . . . , ·)
are related by F1(v1, . . . , vI1) =

∫ v
v . . .

∫ v
v F2(v1, . . . , vI1, vI1+1, . . . , vI2)dvI1+1 . . . dvI2, i.e.

F1(·, . . . , ·) is the marginal of F2(·, . . . , ·). Hence, Fj(·, . . . , ·) has support [v, v]j. As-

sume that the structures [U, Fj], j = 1, 2 satisfy s1(v) < s2(v), i.e. competition renders

bidding more aggressive.18 Here again, the exogeneity of the number of bidders allows

us to identify λ−1(·) on [0, r1] by exploiting variations in the number of bidders, where

Rj(·) = Gj
B×b(bj(α), bj(α))/gj

B,b(bj(α), bj(α)) with bj(α) the α-quantile of the marginal

bid density gj(·) associated with Ij bidders. Specifically, Proposition 3 and Lemma 3

similarly extend to this case.

5.3 Asymmetric Bidders

Asymmetry among bidders, which is known ex ante to all participants, can arise from

two different sources, namely from (i) different distributions of private values and/or (ii)

different utility functions. We consider these cases separately.

Asymmetry in Private Values

Given I ∈ I, the joint private value distribution is F(·, . . . , ·|I) =
∏

i Fi(·|I) with each

Fi(·|I) satisfying Definition 2 on the support [v(I), v(I)]. To simplify, we assume that

all Fi(·|I) have the same support. Let FR be the set of such distributions F(·, . . . , ·|I)

when I ∈ I. Because of the boundary conditions si(v(I)) = v(I) and si(v(I)) = sj(v(I)),

18Section 5.4 relaxes this assumption. The competition effect is unclear with affiliated private values

as some distributions F (·, . . . , ·) may lead to bidding strategies decreasing in the number of bidders as

shown by Pinkse and Tan (2005).
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j 6= i, bidder i’s distribution Gi(·|I) is defined on [b(I), b(I)] for all i = 1, . . . , I. Following

Campo, Perrigne and Vuong (2003), we have

vi = bi + λ−1

(
1

Hi(bi|I)

)
≡ ξi(bi, U,G, I), where Hi(·|I) =

∑

j 6=i

gj(·|I)

Gj(·|I)
, (10)

for i = 1, . . . , I. Let GR be the set of distributions G(·, . . . , ·|·) such that each marginal

distribution Gi(·|·) satisfies Definition 3 with G(b|I)/g(b|I) replaced by 1/Hi(b|I) in (v).

Proposition 6: Any structure [U,F] ∈ UR ×FR with asymmetry in private values is not

identified. On the other hand, the structure [U,F] with the exclusion restriction Fi(·|I) =

Fi(·), i ∈ I is partially identified. Namely, U(·) is identified on [0, maxv∈[v,v],i=1,...,I0 v −
si(v)], while Fi(·), i = 1, . . . , I0 are identified on [v, v], where I0 is the number of bid-

ders participating to both auctions. For the remaining bidders, Fi(·) is identified for the

quantiles satisfying Ri(α) ∈ [0, maxj=1,...,I0 rj1], where Ri(α) is defined below.

The bid distribution G(·, . . . , ·|·) is rationalized if and only if Lemma 1 is satisfied with GR

and ξi(·), i = 1, . . . , I as defined above. Hence, any G(·, . . . , ·|·) ∈ GR can be rationalized

by a structure with [U,F] ∈ UR×FR. It is then straigthforward to show that any structure

[U,F] ∈ UR × FR is not identified.

Under two competitive environments I2 > I1 ≥ 2 and exogenous bidders’ partici-

pation, the bidder of type i has the same private value distribution irrespective of the

number of bidders participating to the auction. Thus, all Fi(·|I)s are defined on the same

support [v, v]. Since our results under exclusion restrictions exploit the difference in bid-

ding behavior under two competitive environments, it is crucial that at least one bidder

participates in both auctions.19 For instance, when I1 = 2 and I2 = 3, at least one of the

bidder in the two bidders auction must participate in the auction with three bidders. In

the case of asymmetry, because of the complexity of the system of differential equations

defining the equilibrium strategies, it is difficult if not impossible to prove that equilibirum

strategies are increasing with competition. Nevertheless, because of the independence of

19More generally, it is important that we observe at least one bidder’s “type” in both auctions. This is

useful in practice as a few “types” are often entertained in empirical studies involving asymmetric bidders.

See for instance Campo, Perrigne and Vuong (2003), Athey, Levin and Seira (2004) and Flambard and

Perrigne (2006).
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private values, it is reasonable to postulate that equilibrium strategies are increasing in

the number of bidders due to the competition effect.

Let sij(·) denote the equilibrium strategy for bidder i = 1, . . . , Ij, when the number of

bidders is Ij, j = 1, 2. The boundary conditions are si1(v) = si′2(v) = v for i = 1, . . . , I1

and i′ = 1, . . . , I2, and sij(v) = si′j(v) for i, i′ = 1, . . . , Ij, j = 1, 2. We assume that

bidders 1, . . . , I0 participate to both auctions, where 1 ≤ I0 ≤ I1. Let vi(α) and bij(α) be

the α-quantiles of Fi(·) and Gij(·) = Gi(·|Ij), respectively. Instead of (4), we now have at

the α-quantile

vi(α) = bij(α) + λ−1 (Rij(α)) , i = 1, . . . , Ij, j = 1, 2 (11)

for α ∈ [0, 1], where Rij(α) = 1/Hij(bij(α)) takes values in the range Rij = [0, rij]

with Hij(·) =
∑

k 6=i gkj(·)/Gkj(·). A straightforward extension of Proposition 3 shows

that λ−1(·) is identified on [0, maxi=1,...,I0 ri1], while [F1, · · · , FI0] are identified on [v, v].

Because λ−1(·) is identified on [0, maxi=1,...,I0 ri1], which may be a strict subset of [0, ri1],

where i refers to a remaining bidder, his private value distribution may not be identified

everywhere justifying the partial identification result of Proposition 6. Lemma 3 also

extends where the compatibility conditions (7) now hold for each of the I0 bidders.

Asymmetry in Preferences

We consider structures of the form [U, F ] ∈ UI
R ×FR with U = {(U1, . . . , UI) ∈ U I

R ≡
⊗I

i=1 UR, I ∈ I} ∈ UI
R. Given I ∈ I and dropping the superscript to simplify, we obtain

for i = 1, . . . , I

vi = bi + λ−1
i

(
1

Hi(bi|I)

)
≡ ξi(bi, Ui,G, I), (12)

where λi(·) = Ui(·)/U ′
i(·) and Hi(·|I) =

∑
j 6=i gj(·|I)/Gj(·|I). For each I, the bound-

ary conditions s1(v) = . . . = sI(v) = v and s1(v) = . . . = sI(v) give a common sup-

port [b(I), b(I)] for the bid distributions across bidders. Let GR be the set of distribu-

tions G(·, . . . , ·|·) such that each marginal distribution Gi(·|·) satisfies Definition 3 with

G(b|I)/g(b|I) replaced by 1/Hi(b|I) in (v).

Proposition 7: Any structure [U, F ] ∈ UI
R×FR with asymmetry in preferences satisfying

H ′
i(·|I) < 0, i = 1, . . . , I, I ∈ I is not identified.20 On the other hand, the structure [U, F ]

20The assumption H ′
i(·|I) < 0 corresponds to an increasing markup viα − biα in α from (12). If all the
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with the exclusion restriction F (·|I) = F (·) is identified. Namely, Ui is identified on

[0, maxv∈[v,v] v − si(v)] for i = 1, . . . , I, while F (·) is identified on [v, v].

Because the α-quantiles (b1α, . . . , bIα) all correspond to the same α-quantile vα, (12) evalu-

ated at an α-quantile for an arbitrary pair (i, j) of bidders gives the compatibility condition

bjα + λ−1
j

(
1

Hj(bjα|I)

)
= biα + λ−1

i

(
1

Hi(biα|I)

)
. (13)

The bid distribution G(·, . . . , ·|·) is then rationalized if and only if (i) Lemma 1 is satisfied

with GR and ξi(·), i = 1, . . . , I as defined above and (ii) the compatibility condition (13)

is satisfied for any pair (i, j) and α ∈ [0, 1].21 The latter condition reduces the set of

bid distributions that can be rationalized relative to the symmetric case and may help

in identification. Despite this condition, the nonparametric model is still not identified.

Since the proof is more involved than in previous cases, we provide a proof of such a result

in the appendix.22

Under exogenous bidders’ participation, we assume again that I0 bidders participate

to both auctions, where I0 ≥ 1 and that equilibrium strategies are increasing in com-

petition. Equation (11) takes a similar form with v(α) and λ−1
i (·) replacing vi(α) and

λ−1(·). A similar argument as in Proposition 3 applies for identifying nonparametrically

λ−1
i (·) on [0, ri1] for i = 1, . . . , I0 from which we can identify F (·) on [v, v]. Since F (·)

is identified everywhere, following a similar argument as in Lu and Perrigne (2006), the

λ−1
j (·)s for the remaining bidders are identified from (12). Specifically, because the v(α)s

are identified, we can recover the remaining λ−1
j (·) on [0, rj]. Again Lemma 3 extends with

the compatibility conditions (13) holding for each of the I0 bidders and λ−1
i (·) replacing

λ−1(·).

bid distributions G1, . . . , GI are log-concave, this assumption is automatically satisfied. Our requirement

is weaker as some bid distributions may not be log-concave. Log-concavity is usually verified on data.
21Though similar in spirit, the compatibility condition (13) applies within each auction, while the

compatibility condition (7) applies across auctions.
22On the other hand, if (say) bidder 1 participates to all auctions and his utility U1(·) is known, the

nonparametric model UI
R × FR becomes identified as (12) for i = 1 allows to identify F (·|·). Thus,

evaluated at the α-quantile, (12) for i 6= 1 allows to identify λi(·) on [0, maxα(vα − biα)]. This result is

useful when bidders differ by their sizes and “large” ones, wich participate to all auctions, can be assumed

to be risk neutral.
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Asymmetry in Both Preferences and Private Values

This third case involves asymmetry in both private value distributions and preferences.

Given the above results, the model is not identified in general. We then consider exoge-

nous bidders’ participation. Thus, (11) takes a similar form with λ−1
i (·) replacing λ−1(·).

Despite the complexity of this case, which has not been considered to our knowledge, it

can be shown that the structure [λi, Fi] is nonparametrically identified for the I0 ≥ 1

bidders who participate to both auctions. Specifically, we can apply Proposition 3 to each

of these participating bidders to identify nonparametrically λ−1
i (·) and Fi(·) on [0, ri1] and

[v, v], respectively. On the other hand, we cannot identify the pair [λ−1
i (·), Fi(·)] for the

other bidders. Again Lemma 3 extends with the compatibility condition (7) holding for

each of the common bidders where λ−1
i (·) replaces λ−1(·).

5.4 Bidding Strategies Nonincreasing in Competition

In the previous extensions, we have assumed that equilibrium strategies are increasing in

the number of bidders to simplify the exposition. This may not be always the case. For

instance, as indicated previously, affiliated private values may lead to equilibirum strate-

gies that are decreasing in competition for some F(·, . . . , ·|·). In this section, we discuss

how our results extend when the equilibrium strategies are nonincreasing in competition.

As before, let I1 < I2. We assume that for a bidder participating to both auctions his

equilibrium strategies s1(·) and s2(·) intersect a finite number of times at most. This

excludes the case where these strategies are identical on some open interval of private

values. The nonparametric identification of the model is then established through the

following steps:

• Step 1: From the knowledge of G1(·) and G2(·), we can identify the positive values

0 ≥ α∗
1 < . . . < α∗

K ≥ 1 at which the equilibrium strategies s1(·) and s2(·) intersect,

i.e. such that b1(α
∗
k) = b2(α

∗
k).

• Step 2: Let sj(·) < sj′(·) on (v, v(α∗
1)), j, j

′ = 1, 2. By Proposition 3, for any α0 ∈
(0, α∗

1) , we can identify λ−1(u0) as
∑+∞

t=0 |∆b(αt)|, where u0 = Rj(α0). By continuity

of λ−1(·), we can also identify λ−1(Rj(α
∗
1)) which is also equal to λ−1(Rj′(α

∗
1)) by the

compatibility condition (7). Hence, λ−1(·) is identified on [0, maxα∈[0,α∗
1 ] Rj(α)] =
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[0, max{maxα∈[0,α∗
1 ] Rj(α), maxα∈[0,α∗

1 ] Rj′(α)}].

• Step 3: We have sj′(·) < sj(·) on (v(α∗
1), v(α∗

2)). For any α0 ∈ (α∗
1, α

∗
2), we let

u0 = Rj′(α0) and by Proposition 3 we construct recursively αt+1 from the equation

Rj′(αt+1) = Rj(αt) subject to αt+1 < αt. There are two possibilities:

(i) If αt+1 ∈ [0, α∗
1], we stop this sequence as we switch to values for which

sj(·) ≤ sj′(·). We have λ−1(u0) = λ−1(Rj′(αt+1)) +
∑t

s=0 |∆b(αs)|. But

λ−1(Rj(αt+1)) = λ−1(Rj′(αt+1))+ |∆b(αt+1)|, where λ−1(Rj(αt+1)) is identified

from Step 1 and hence equal to
∑+∞

r=0 |∆b(α′
r)| for some decreasing sequence

{α′
r} with α′

0 = αt+1. Thus λ−1(u0) =
∑+∞

r=1 |∆b(α′
r)| +

∑t
s=0 |∆b(αs)|, which

gives λ−1(u0) =
∑+∞

t=0 |∆b(αt)| by letting α′
r ≡ αt+r. Figure 2 illustrates this

case, where j = 1, j ′ = 2 and t + 1 = 2.

(ii) If αt+1 remains in (α∗
1, α

∗
2) for all t, the sequence {αt} will converge to α∗

1. Tak-

ing the limit gives λ−1(u0) = λ−1(Rj′(α
∗
1))+

∑+∞
s=0 |∆b(αs)|. But λ−1(Rj′(α

∗
1)) =

λ−1(Rj(α
∗
1)), where the latter is identified from Step 2. Figure 3 illustrates this

case with j = 1 and j ′ = 2.

By continuity of λ−1(·), we can also identify λ−1(Rj′(α
∗
2)) which is also equal to

λ−1(Rj(α
∗
2)) by the compatibility condition (7). Hence, at the end of Step 3, λ−1(·) is

identified on [ min{minα∈[α∗
1 ,α∗

2 ] Rj(α), minα∈[α∗
1 ,α∗

2 ] Rj′(α)}, max{maxα∈[α∗
1 ,α∗

2] Rj(α),

maxα∈[α∗
1 ,α∗

2 ] Rj′(α)} ]. By combining Step 2 and Step 3, λ−1(·) is identified on

[0, max{maxα∈[0,α∗
2 ] Rj(α), maxα∈[0,α∗

2 ] Rj′(α)}].

• Step 4: For any k ≥ 2 and α0 ∈ (α∗
k, α

∗
k+1), we repeat Step 3 and its two possibil-

ities. If αt+1 ∈ [0, α∗
k], we stop the sequence and we have λ−1(u0) = λ−1(Rj′(αt+1))+

∑t
s=0 |∆b(αs)|, where λ−1(Rj′(αt+1)) is identified from previous steps. Thus λ−1(u0) =

∑+∞
t=0 |∆bαt | as in Step 3-(i). If αt+1 remains in (α∗

k, α
∗
k+1), Step 3-(ii) applies and

λ−1(u0) is identified. As before, by continuity, λ−1[Rj(α
∗
k+1)] = λ−1[Rj′(α

∗
k+1)] is

identified. Applying a similar argument, the combination of the various steps allows

us to identify λ−1(·) on [0, max{maxα∈[0,α∗
k+1

] Rj(α), maxα∈[0,α∗
k+1

] Rj′(α)}] and hence

on [0, max{maxα∈[0,1] Rj(α), maxα∈[0,1] Rj′(α)}] when k + 1 = K.
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The identification of the bidder’s private value distribution F (·) follows as in Proposi-

tion 3. The above procedure shows that assuming bidding strategies increasing in compe-

tition is not necessary to identify nonparametrically the model. The construction of the

sequence {αt} is however more involved.

6 Observed and Unobserved Heterogeneity

The previous sections have shown that exogenous variations in the number of bidders can

be exploited to identify nonparametrically the bidders’ utility functions and their private

value distributions with a binding or nonbinding reserve price, affiliated private values

and asymmetric bidders. In practice, some additional variables and possible unobserved

heterogeneity can explain auctioned objects heterogeneity and bidders’ participation. This

section discusses how our previous results extend to this context. In particular, bidders’

participation may be endogenous and some of these additional variables can play the role

of instrumental variables through exclusion restrictions.

We first consider the case of unobserved heterogeneity in bidder’s participation. This

leads to a model of exogenous participation. Let W be a vector of observed variables

characterizing heterogeneity across auctioned objects. These variables are assumed to

affect both bidders’ private value distribution and bidders’ participation.23 Bidders’ par-

ticipation is modeled as I = I(W, ε), where ε can be interpreted as a term of unobserved

heterogeneity or as a traditional error term. We assume v ⊥ ε|W , namely bidders’ pri-

vate values are independent of ε given the auction characteristics W . This assumption

translates into the exclusion restriction F (v|W, ε) = F (v|W ), while the observed bid dis-

tribution is G(b|I, W ) since b = s(v, U, F, I). This model is similar to the one in Section

4 since the latent private value distribution does not depend on the number of bidders

or equivalently bidders’ private values are independent of I given W leading to the exo-

geneity of I. The only difference between the two models is the introduction of the vector

of conditioning variables W . This exclusion restriction allows us to exploit variations in

bidding behavior under two competitive environments, i.e. I2 > I1, at W given. Proposi-

tion 3 applies and the pair [U(·), F (·|·)] is nonparametrically identified, while the quantile

23See Athey, Levin and Seira (2004) for example of such variables.
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becomes bj(α, W ). Regarding Lemma 3, the bids are now conditionally independent given

W in (i), while the rest extends straightforwardly.

The term of unobserved heterogeneity ε may, however, affect the private value distri-

bution as ε can capture some unobserved characteristics affecting both private values and

bidders’ participation. This leads to a model of endogenous participation. The introduc-

tion of additional variables or instruments combined with appropriate exclusion restric-

tions solves this problem. Specifically, bidders’ participation is modeled as I = I(W, Z, ε),

while we assume v ⊥ Z|(W, ε), namely the bidders’ private values are independent of

Z given (W, ε). This translates into the exclusion restriction F (v|W, Z, ε) = F (v|W, ε).

Hence, the variables Z can be viewed as instruments. This model corresponds to an

endogenous number of bidders as the unobserved heterogeneity ε affects both bidders’

private values and bidders’ participation. This model is reminiscent of Bajari and Hor-

tacsu (2003) modeling of bidders’ entry in online coin auctions within a common value

framework. Their empirical results show that the variables explaining bidder’s entry are

the appraisal value of the auctioned object (W ), the reserve price for the auctioned ob-

ject (Z1) and the seller’s reputation (Z2), while the bidder’s private signal distribution

depends on the appraisal value W only. Haile, Hong and Shum (2003) also adopt a

similar framework to test for common value in first-price sealed-bid auctions when I is

endogenous.

Proposition 8:The structure [U, F ] with endogenous participation and unobserved het-

erogeneity is identified under the exclusion restriction F (·|W, Z, ε) = F (·|W, ε), additive

separability of I(W, Z, ε) in ε and E[ε|W, Z] = 0.

The argument is as follows. The observed bid distribution satisfies G(b|W, Z, ε) = G(b|I,

W, ε) as s(·) = s(·, I, W, ε), where v ∼ F (v|W, Z, ε) = F (v|W, ε) and I = I(W, Z, ε). The

parallel with Proposition 3 appears as we can exploit variations in bidding behavior under

two competitive environments while the latent distribution remains the same at (W, ε)

given. The term of heterogeneity ε is, however, unobserved. Under additive separability

of ε, we have I(W, Z, ε) = I(W, Z) + ε, where ε takes a finite number of values. Under

the assumption E(ε|W, Z) = 0, I(W, Z) = E(I|W, Z). Because E(I|·, ·) is the regression

of I on (W, Z), E(I|·, ·) is nonparametrically identified so that ε can be recovered as

ε = I − E(I|·, ·). Proposition 3 applies and [U, F ] is nonparametrically identified, while
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the quantile becomes bj(α, W, ε). Regarding Lemma 3, the bids are now conditionally

independent given (W, ε) in (i), while the rest extends straightforwardly.

It should be noted that endogenous entry with an additive error term is a general

method that can be used for solving the problem of unobserved heterogeneity. The ex-

clusion restriction or existence of instruments Z is not needed in general and is used here

because the model is not identified otherwise. For instance, consider the risk neutral

model with endogenous entry I = I(W )+ ε, where the bidders’ private value distribution

is F (v|W, ε). Hence, some unobserved heterogeneity affects both bidders’ participation

and private values. As above, ε can be recovered as ε = I − E(I|W, ε). Thus, F (·|W, ε)

is nonparametrically identified following Guerre, Perrigne and Vuong (2000, Theorem 1).

This method differs from Krasnokutskaya (2004) who identifies the term of unobserved

heterogeneity in a private value model F (v|W, ε) with exogenous participation I = I(W )

using a multiplicative decomposition of private values. Her result then relies on a mea-

surement error model with multiple indicators studied in Li and Vuong (1998).

7 Conclusion

This paper addresses the problem of nonparametric identification of bidders’ utility func-

tion(s). We show that the auction model with risk aversion is not identified in general

and that it imposes weak restrictions on observables. This implies that the auction model

with risk averse biddders is not testable in view of bids only. In view of these results,

we exploit exclusion restrictions under the form of an exogenous bidders’ participation to

identify nonparametrically the bidders’ utility function and their private value distribu-

tion. The results are general as they extend to a binding reserve price, affiliated private

values and asymmetric bidders. We also provide some conditions that must be verified by

the data and can be used for model testing. More generally, identifiying risk aversion is

an important problem in the analysis of microeconomic data. In this respect, it would be

interesting to investigate how similar ideas can be exploited to identify nonparametrically

agents’ utility function in other economic contexts such as in insurance.

A nonparametric estimation method clearly needs to be developed. Recent results

on the nonparametric estimation of quantiles can be used. The difficulty relies, however,

in the infinite series of differences in quantiles that identify λ−1(·) in Proposition 3 as
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the sequence of estimated {α̂t} and hence the estimated ∆b̂(α̂t) are serially correlated.

This greatly complicates the derivation of the asymptotic properties of the resulting es-

timator and its rate of convergence. Another possibility could be to exploit directly the

compatibility conditions (7) to estimate nonparamerically λ−1(·). On the other hand,

if one is willing to impose some parameterization on U(·) and a quantile restriction on

F (·), one can use the semiparametric estimator proposed in Campo, Guerre, Perrigne and

Vuong (2007) as the model is semiparametrically identified under the exclusion restriction

considered here. If data permit, an alternative method is to combine bidding data from

ascending and sealed-bid auctions as proposed by Perrigne and Lu (2006).
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Appendix A

This appendix contains the proofs of Lemmas 1–3, Propositions 1–3, the first part of Propo-

sition 7 and Corollary 1.

Proof of Lemma 1: First, we prove that (i) and (ii) are necessary. Because bi = s(vi, U, F, I)

and the vis are i.i.d., the bis are also i.i.d. The fact that G(·|·) ∈ GR follows from Theorem 1,

Definitions 1-2 and (3). To prove that (ii) is also necessary, consider (4), where λ(·) ≡ U(·)/U ′(·).
Thus λ(·) is defined from IR+ to IR+ because λ(0) = limx↓0 λ(x) = 0, as noted after Definition

1. As U(·) admits R + 2 continuous derivatives on (0,+∞) with U ′(·) > 0, and limx↓0 λ
(r)

is finite for r = 1, . . . , R + 1, then λ(·) has R + 1 continuous derivatives on [0,+∞). As

λ′(·) = 1 − λ(·)U ′′(·)/U ′(·), we have λ′(·) ≥ 1 because λ(·) ≥ 0, U ′(·) > 0 and U ′′(·) ≤ 0. It

remains to show that ξ′(·) > 0. The equilibrium strategy must solve the differential equation

(2). As (4) follows from (2), s(·) must satisfy ξ[s(v), U,G, I] = v for all v ∈ [v, v]. We then

obtain ξ(b, U,G, I) = s−1(b, U, F, I). This implies ξ′(·) = [s−1(·)]′ > 0 using Theorem 1.

Second, we show that (i) and (ii) are together sufficient. First, we construct a pair [U,F ] ∈
UR × FR. Let U(·) be such that λ(·) = U(·)/U ′(·) or U ′(·)/U(·) = 1/λ(·). Integrating with

the normalization U(1) = 1 gives U(x) = exp
∫ x
1 1/λ(t)dt. We verify that U(·) ∈ UR. Because

λ(·) admits R + 1 continuous derivatives on [0,+∞), then Definition 1-(iii) is clearly satisfied.

Moreover, in the neighborhood of zero, λ(t) ∼ λ′(0)t with 1 ≤ λ′(0) < ∞. Thus
∫ 1
x 1/λ(t)dt

diverges to infinity, which implies that U(x) tends to zero as x ↓ 0. Define U(0) = 0 so

that U(·) is continuous on [0,+∞). Because U ′(x) = exp
∫ x
1 1/λ(t)dt/λ(x), where λ(·) > 0 on

(0,+∞), we have U ′(·) > 0 on (0,+∞). The second-order derivative gives U ′′(x) = [−λ′(x) +

1] exp
∫ x
1 1/λ(t)dt/λ2(x). Since λ′(x) ≥ 1, U ′′(·) ≤ 0 on (0,+∞). It remains to show that U(·)

admits R + 2 continuous derivatives on (0,+∞). By assumption, λ(·) has R + 1 continuous

derivatives on [0,+∞). It follows that U(·) admits R+ 2 continuous derivatives on (0,+∞).

Let F (·|I) be the distribution of X = b+ λ−1[G(b|I)/(I − 1)g(b|I)] conditional on I, where

b ∼ G(·|I). We verify that F (·|·) ∈ FR. We have F (x|I) = Pr(X ≤ x|I) = Pr[ξ(b) ≤ x|I] =

Pr[b ≤ ξ−1(x)|I] = G[ξ−1(x)|I], because ξ′(·) > 0 by assumption. This implies F (·|I) =

G[ξ−1(·)|I] on [v(I), v(I)], where v(I) ≡ ξ(b(I)) = b(I) and v(I) ≡ ξ(b(I)) <∞ by continuity of

ξ(·). Because ξ(·) and G(·|I) are strictly increasing, F (·|I) is strictly increasing on its support

[v(I), v(I)]. Moreover, ξ(·) is R+ 1 continuously differentiable on [b(I), b(I)]. This follows from

the definition of ξ(·), the R+ 1 continuous differentiability of λ−1(·) on [0,+∞), and the R+ 1

continuous differentiability of G(·|I)/g(·|I) on [b(I), b(I)], which follows from Definition 3-(iv,v).

Thus F (·|I) = G[ξ−1(·)|I] admits R+1 continuous derivatives on [v(I), v(I)] because G(·|I) has
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R + 1 continuous derivatives on [b(I), b(I)]. It remains to show that f(·|I) > 0 on [v(I), v(I)].

This follows from f(·|I) = g[ξ−1(·)|I]/ξ′[ξ−1(·)], where g(·|I) > 0 from Definition 3 and ξ′(·) is

finite on [b(I), b(I)].

Lastly, we show that the pair [U,F ] rationalizes G(·|·), i.e. that G(·|I) = F [s−1(·, U, F, I)|I]
on [b(I), b(I)], where s(·, U, F, I) solves (2) with the boundary condition s(v(I), U, F, I) = v(I).

By construction of F (·|I), G(·|I) = F [ξ(·)|I]. Thus, it suffices to show that ξ−1(·) solves (2)

with the boundary condition ξ−1(v(I)) = v(I). The boundary condition is straightforward as

ξ(b(I)) = b(I) = v(I). By construction of F (·|I), f(·|I)/F (·|I) = [ξ−1(·)]′g[ξ−1(·)|I]/G[ξ−1(·)|I].
Thus ξ−1(·) solves (2) if 1 = {(I−1)g[ξ−1(v)|I]λ[v−ξ−1(v)]}/G[ξ−1(v)|I] for all v ∈ [v(I), v(I)].

Making the change of variable v = ξ(b) and noting that ξ(b)−b = λ−1[G(b|I)/(I−1)g(b|I)] from

the definition of ξ(·), it follows that ξ−1(·) solves (2) with boundary condition ξ−1(v(I)) = v(I).

2

Proof of Proposition 1: In view of Lemma 1, it suffices to prove sufficiency. Specifically, it

suffices to find a function λ(·) satisfying Lemma 1-(ii), where G(·|·) ∈ GR. Denote G(b|I)/[(I −
1)g(b|I)] by ψ(b). Let minb∈[b(I),b(I)] ψ

′(b) = ψ′, which is finite from Definition 3. If ψ′ > 0, any

strictly increasing function λ(·) will satisfy ξ′(·) ≥ 0, where ξ(b) = b+λ−1(ψ(b)). It then suffices

to take a λ(·) function that admits R+ 1 continuous derivatives on [0,+∞) with λ(0) = 0 and

λ′(·) ≥ 1. If ψ′ < 0, we must find a strictly increasing and differentiable function λ(·) such that

minb∈[b(I),b(I)]

{
(1/λ′[λ−1(ψ(b))]) × ψ′(b)

}
> −1 to satisfy ξ′(·) > 0 on [b(I), b(I)]. To satisfy the

latter inequality, it suffices that the function λ(·) satisfies λ′(·) ≥ 1 and ψ′ maxb∈[b(I),b(I)] 1/λ
′[λ−1

(ψ(b))]>−1, where the latter inequality is equivalent to ψ′ > −1/[maxb∈[b(I),b(I)] 1/λ
′[λ−1(ψ(b))].

But maxb∈[b(I),b(I)] 1/λ
′[λ−1(ψ(b))] = maxx∈[0,x] 1/λ′(x) because x ≡ λ−1(ψ(b)) takes its value

between λ−1[ψ(b(I))] = 0 and x =≡ λ−1[maxb∈[b(I),b(I)] ψ(b(I))] < +∞. Moreover, maxx∈[0,x] 1/

λ′(x) = 1/minx∈[0,x] λ
′(x) ≡ 1/λ′, where λ′ ≥ 1. Hence ψ′ > −λ′, i.e. 0 < −ψ′ < λ′. Thus, λ(·)

must have a sifficiently steep slope. To complete the proof, it suffices to take a λ(·) function

that admits R+ 1 continuous derivatives on [0,+∞) with λ(0) = 0.2

Proof of Proposition 2: Let [U,F ] ∈ UR ×FR with bid distribution G(·|·) ∈ GR by Lemma 1.

Let [Ũ , F̃ ] be such that Ũ(·) = [U(·/δ)/U(1/δ)]δ , with δ ∈ (0, 1) and F̃ (·|I) be the conditional

distribution given I of

ξ̃(b, Ũ , G, I) = b+ λ̃−1
(

1
I − 1

G(b|I)
g(b|I)

)
= b+ δλ−1

(
1

I − 1
G(b|I)
g(b|I)

)
= (1 − δ)b+ δξ(b, U,G, I),

where b ∼ G(·|I). It is easy to check that [Ũ , F̃ ] ∈ UR × FR. Because ξ̃(·) is the weighted sum

of two strictly increasing functions in b, then ξ̃(·) is strictly increasing. Hence, from Lemma 1
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the structures [U,F ] and [Ũ , F̃ ] are observationally equivalent, and [U,F ] is not identified. 2

Proof of Lemma 2: (i) We first prove that s1(v) < s2(v) for any v ∈ (v, v]. We have

s2(v) = s1(v) = v. Moreover, from Theorem 1-(ii) we have

0 < s′j(v) =
(Ij − 1)λ′(0)

(Ij − 1)λ′(0) + 1
= 1 − 1

(Ij − 1)λ′(0) + 1
< 1 (A.1)

where λ′(0) ≥ 1. Thus 0 < s′1(v) < s′2(v) < 1. In particular, by continuity of sj(·) it follows

that v < s1(v) < s2(v) for any v ∈ (v, ε) for some ε satisfying v < ε ≤ v. The proof is now

by contradiction. Suppose that s1(v) ≥ s2(v) for some v ∈ [ε, v]. Because s1(v) < s2(v) for

any v ∈ (v, ε), the continuity of sj(·) would imply the existence of some v0 ∈ [ε, v] such that

s1(v0) = s2(v0). Moreover, for (at least) one of such v0 denoted v∗0 , the strategy s1(·) must

intersect the strategy s2(·) from below, i.e. s′1(v
∗
o) ≥ s′2(v

∗
o). From (2), we have

s′j(v
∗
0) = (Ij − 1)

f(v∗0)
F (v∗0)

λ (v∗0 − sj(v∗0))

for j = 1, 2, where f(v∗0) > 0 and F (v∗0) > 0 since v∗0 ∈ (v, v], while λ(v∗0 − sj(v∗0)) > 0 since

v∗0 > sj(v∗0) by Theorem 1-(i) and λ(·) > 0 on (0,+∞). By construction s1(v∗0) = s2(v∗0). The

previous equation then implies s′1(v
∗
0) < s′2(v

∗
0), contradicting s′1(v

∗
0) ≥ s′2(v

∗
0).

(ii) Next, we prove the first inequality, which implies the third inequality after immediate algebra.

For each j = 1, 2, (2) gives

s′j(v)
Ij − 1

=
f(v)
F (v)

λ (v − sj(v)) (A.2)

for any v ∈ [v, v]. From (i), v − s2(v) < v − s1(v) for any v ∈ (v, v]. Because 0 < v − s2(v) for

any v ∈ (v, v] by Theorem 1-(i), and λ(·) is strictly increasing with λ(·) > 0 on (0,+∞), then

0 < λ(v − s2(v)) < λ(v − s1(v)) for any v ∈ (v, v]. Hence, because f(·) > 0 and F (·) > 0 on

(v, v], it follows from (A.2) that

s′2(v)/(I2 − 1) < s′1(v)/(I1 − 1) (A.3)

for any v ∈ (v, v].24 Integrating (A.3) from v to v > v and using sj(v) = b give

s2(v) − b

I2 − 1
<
s1(v) − b

I1 − 1
(A.4)

for any v ∈ (v, v]. The desired result follows after immediate algebra. 2

24Equation (A.1) shows that s′2(v)/(I2 − 1) < s′1(v)/(I1 − 1) also holds at v = v.
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Proof of Corollary 1: The desired result holds when I = I and I = I by Lemma 2. Let

I ∈ (I, I). With I = I1 < I2 in (5), the first inequality in (5) gives

(I − 1)
b2(α) − b

I2 − 1
+ b < bI(α),

for any α ∈ (0, 1] and any I2 > I. Equation (A.4) applied to an arbitrary pair (I2, I ′2) with

I2 < I ′2 shows that the LHS in the above inequality is strictly decreasing in I2. Hence, the most

stringent inequality is obtained when I2 is the smallest, i.e. when I2 = I + 1. Similarly, with

I = I2 > I1 in (5), the third inequality in (5) gives

bI(α) < (I − 1)
b1(α) − b

I1 − 1
+ b

for any α ∈ (0, 1] and any I1 < I. The RHS in the above inequality is strictly decreasing in I1

from (A.4). Hence, the most stringent inequality is obtained when I1 is the largest, i.e. when

I1 = I − 1. Combining these two results gives

I − 1
I

bI+1(α) +
1
I
b < bI(α) <

I − 1
I − 2

bI−1(α) − 1
I − 2

b, (A.5)

for any α ∈ (0, 1]. On the other hand, the middle inequality of (5) gives

bI−1(α) < bI(α) < bI+1(α), (A.6)

for any α ∈ (0, 1] and any I ∈ [I, I]. The desired result follows by combining (A.5) and (A.6).

The second part of the corollary follows by noting that bI is a strictly increasing function of

v, namely bI = sI(v) fo each I. Hence, the random variables max{bI−1, [(I − 1)bI+1 + b]/I} and

min{bI+1, [(I − 1)bI−1 − b]/(I − 2)} are also strictly increasing functions of v. It follows that

the α-quantiles of their corresponding distributions GI(·) and GI(·) are equal to these functions

evaluated at v(α). Thus, they are equal to the first term and third term of the two inequalities

displayed in Corollary 1, respectively since bI(α) = sI [v(α)]. The stochastic dominance assertion

then follows from these two inequalities. 2

Proof of Proposition 3: From bj(α) = sj[v(α)] and (4) evaluated at v = v(α), we obtain the

crucial relation

v(α) = bj(α) + λ−1

(
1

Ij − 1
α

gj [bj(α)]

)
(A.7)

for j = 1, 2 and any α ∈ [0, 1]. Hence, using (6) we obtain the nonlinear relation

λ−1[R1(α)] = λ−1[R2(α)] + ∆b(α) (A.8)
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for any α ∈ [0, 1]. For future use, we note that ∆b(0) = 0 as s1(v) = s2(v) = b. Moreover,

from Lemma 2, we know that s1(v) < s2(v) for any v ∈ (v, v], which implies b1(α) < b2(α) for

any α ∈ (0, 1]. Hence, ∆b(α) > 0 for any α ∈ (0, 1]. Because λ−1(·) is strictly increasing and

Rj(α) > 0 for any α ∈ (0, 1], it follows from (A.8) that R1(α) > R2(α) > 0 for any α ∈ (0, 1].

In particular, because Rj(·) is continuous on [0, 1] and Rj(0) = 0 for j = 1, 2, the range Rj of

Rj(·) must be of the form [0, rj] with 0 < rj <∞ and r1 > r2, as claimed in the text.

Now, by assumption u0 belongs to R1 = [0, r1]. If u0 = 0, then λ−1(0) = 0. Next, consider

the general case u0 ∈ (0, r1]. Thus, there exists some α0 ∈ (0, 1] such that u0 = R1(α0). In

particular, we have u0 = R1(α0) > R2(α0) > 0 = R1(0) because R1(·) > R2(·) > 0 on (0, 1].

Moreover, because R1(·) is continuous on [0, 1], there exists some α1 satisfying α0 > α1 > 0

and R1(α1) = R2(α0). Continuing such a construction, we have R1(α1) > R2(α1) > 0 = R1(0),

which implies that there exists some α2 satisfying α1 > α2 > 0 and R1(α2) = R2(α1). Thus,

we have constructed a sequence, which is not necessarily unique such that 1 ≥ α0 > α1 > . . . >

αt > . . . > 0 with u0 = R1(α0) > R2(α0) = R1(α1) > R2(α1) = R1(α2) > . . . > R2(αt−1) =

R1(αt) > . . . > 0, as indicated in the text.25 Because the sequence {αt} is strictly decreasing

and is in (0, 1], it must converge to some finite limit α∞ ∈ [0, 1]. Because Rj(·) is continuous

on [0, 1], then limt→+∞Rj(αt) = Rj(α∞) for j = 1, 2. But R2(αt−1) = R1(αt) by construction,

implying that R2(α∞) = R1(α∞). Because R2(α) = R1(α) only for α = 0, this implies that

α∞ = 0, and consequently limt→+∞Rj(αt) = 0 for j = 1, 2.

We now iterate (A.8). Specifically, for any u0 ∈ R1 \ {0} and any corresponding sequence

{αt} as constructed above, we must have the nonlinear dynamic relation

λ−1(u0) = λ−1[R2(α0)] + ∆b(α0)

= λ−1[R1(α1)] + ∆b(α0)

= λ−1[R2(α1)] + ∆b(α0) + ∆b(α1)
...

= λ−1[R2(αt)] + ∆b(α0) + . . .∆b(αt).

See Figure 1 for an illustration. Because λ−1(·) is continuous on [0,+∞) with λ−1(0) = 0 and

limt→+∞R2(αt) = 0, as shown above, then limt→+∞ λ−1[R2(αt)] = 0. Because λ−1(u0) is finite,

it follows from the above equation that limt→+∞
∑t

τ=0 ∆b(ατ ) must exist and that it is equal

25When R1(·) is strictly increasing, or equivalently by (4) when the bidder’s rent is strictly increasing

in v, then α0 = R−1
1 (u0) and αt = [R−1

1 ◦ R2]t(α0), for t = 1, 2, . . ., where ◦ denotes the composition of

two functions and [R−1
1 ◦R2]t denotes the t-composition of R−1

1 ◦R2. Thus the sequence {αt} is unique.
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to λ−1(u0), i.e. λ−1(u0) =
∑+∞

τ=0 ∆b(ατ ) as desired. Note that this must be so irrespective of

the sequence {αt}, whether such a sequence is unique. Moreover, because ∆b(ατ ) depends only

on bj(·) and Rj(·), which depend only on the distributions Gj(·), the latter equality shows that

λ−1(·) is identified nonparametrically on R1 from observed equilibrium bids.

The nonparametric identification of F (·) follows immediately from F (·) = Gj [ξ−1
j (·)]. For,

the nonparametric identification of λ−1(·) on R1 and hence on R2⊂R1 implies the nonparamet-

ric identification of ξj(·) on [b, bj] for j = 1, 2 by (4) and (6). The latter implies the nonparametric

identification of ξ−1
j (·) = sj(·) on [v, v]. Alternatively, pick an arbitrary α0 ∈ [0, 1]. From (6)

and (A.7) for (say) j = 1, we have v(α0) = b1(α0) + λ−1[R1(α0)]. Thus, the above explicit

expression for λ−1(u0) with u0 = R1(α0) gives

v(α0) = b1(α0) +
+∞∑

t=0

∆b(αt) (A.9)

showing that the α0-quantile of F (·) is identified. Because α0 is arbitrary in [0, 1], it follows

that F (·) is identified on [v, v]. 2

Proof of Lemma 3: First, we prove that (i), (ii) and (iii) are necessary. We use a double

index (i, j) with i indexing bidder i among the Ij bidders and j = 1, 2 indicating the level of

competition. Because bij = sj(vi, U, F, Ij) and the vijs are i.i.d., the bijs are also i.i.d. given

Ij , j = 1, 2. The fact that Gj(·) ∈ GR, j = 1, 2 follows from Lemma 1. This establishes (i).

Because s1(v) < s2(v) for any v ∈ (v, v] from Lemma 2 and noting that bj = sj(v) with sj(·)
strictly increasing, it follows that bj(α) = sj[v(α)]. Hence, b1(α) < b2(α) for any α ∈ (0, 1]

or equivalently G1(·) ≺b G2(·). This establishes (ii). Lastly, because λ(·) = U(·)/U ′(·) and

U(·) satisfies Definition 1, then λ(·) is defined from IR+ to IR+ with λ(0) = 0, λ′(·) ≥ 1 and

λ(·) is continuously differentiable on [0,∞). Because F (·) is invariant in I, its quantiles are

also invariant in I. Thus, considering (4) for two values I1 and I2 at any α-quantile with

α ∈ [0, 1] and I1 6= I2 leads to (7). It remains to show that ξ′j(·) > 0, j = 1, 2. The equilibrium

strategy sj(·) must satisfy ξj[sj(v), U,G, Ij ] = v for any v ∈ [v, v] and j = 1, 2. We then obtain

ξj(b, U,G, Ij) = s−1
j (b, U, F, I). This implies ξ′j(·) = [s−1(·)]′ > 0. This establishes (iii).

Conversely, we show that (i), (ii) and (iii) are together sufficient. We construct a pair

[U,F ] that satisfies Definitions 1 and 2 and is independent of I. Let U(·) be such that λ(·) =

U(·)/U ′(·) or 1/λ(·) = U ′(·)/U(·). Integration of the latter with the normalization U(1) = 1

gives U(x) = exp
∫ x
1 1/λ(t)dt. We need to verify that U(·) satisfies Definition 1. This follows

from the proof of Lemma 1. Let Fj(·) be the distribution of Xj = b+ λ−1[Gj(b)/((Ij − 1)gj(b))]

given Ij, where b ∼ Gj(·), j = 1, 2. Note that Fj(·) satisfies Definition 2 by the proof of Lemma
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1. Moreover, because the compatibility condition is satisfied for any α ∈ [0, 1], it implies that

the corresponding α-quantile of Fj(·) does not depend on Ij . Hence F1(·) = F2(·) ≡ F (·),
which thereby satisfies Definition 2. Lastly, we show that the pair [U,F ] can be rationalized by

G1(·) and G2(·) with I2 > I1, i.e. that Gj(·) = F [s−1
j (·, U, F, Ij)], j = 1, 2, where sj(·, U, F, Ij)

solves the first-order differential equation defining the equilibrium strategy with the boundary

condition sj(v, U, F, Ij) = v. By construction, Gj(·) = F [ξj(·)]. Thus it suffices to show that

ξ−1
j (·), j = 1, 2 solves the differential equation (2). This proof can be found in Lemma 1, which

shows that ξ−1
j (·), j =, 1, 2 solves the differential equation with I = Ij under the boundary

condition ξ−1
j (v) = v. 2

Proof of Proposition 7: We prove the first part only. Let [U, F ] ∈ UI
R ×FR. This structure

generates G(·, . . . , ·|·) ∈ GR whose marginal distributions satisfy Definition 3 and the compati-

bility condition (13). We show that there exists another structure [Ũ, F̃ ] ∈ UI
R×FR rationalizing

G(·, . . . , ·|·). The proof is in four steps and is done for every fixed I ∈ I.

Step 1: Construction of [Ũ1, . . . , ŨI , F̃ (·|I)]. Let Ũ1(·) = [U1(·/δ)/U1(1/δ)]δ with δ ∈ (0, 1).

Thus, λ̃1(·) = λ1(·/δ) and λ̃−1
1 (·) = δλ−1

1 (·). For i = 2, . . . , I, let Ũi(x) = exp
[∫ x

1 1/λ̃i(t)dt
]

so

that λ̃i(·) = Ũi(·)/Ũ ′
i (·), where λ̃i(·) is such that λ̃−1

i [1/Hi(biα|I)] = λ̃−1
1 [1/H1(b1α|I)]+b1α−biα,

for all α ∈ [0, 1]. The latter well-defines λ̃−1
i (·) because 1/Hi(biα|I) strictly increases as α

increases given H ′
i(·|I) < 0 by assumption. Moreover, λ̃i(·) is strictly increasing as shown in Step

3. Note that the compatibility condition (13) is satisfied by construction. We then let F̃ (·|I) be

the conditional distribution given I of ṽi ≡ bi + λ̃−1
i [1/Hi(bi|I)] ≡ ξ̃i(bi) for an arbitrary i, where

bi ∼ Gi(·|I). Using λ̃−1
1 (·) = δλ−1

1 (·), we obtain λ̃−1
i [1/Hi(biα|I)] = δλ−1

1 [1/H1(b1α|I)]+b1α−biα.
Thus, (13) with j = 1 gives

λ̃−1
i

(
1

Hi(biα|I)

)
= δλ−1

i

(
1

Hi(biα|I)

)
+ (1 − δ)(b1α − biα). (A.10)

Equivalently, λ̃−1
i [1/Hi(biα|I)] = λ−1

i [1/Hi(biα|I)] − (1 − δ)λ−1
1 [1/H1(b1α|I)]. In particular,

since λ−1
i (·) is bidder’s i shading, the shading under [Ũ1, . . . , ŨI , F̃ ] is smaller than under

[U1, . . . , UI , F ], i.e. bidders bid more aggressively under the former than under the latter.

Step 2: λ̃i(0) = 0 and ξ̃′i(·) > 0 on [b, b]. Because [U, F ] ∈ UI
R×FR so that G(·, . . . , ·|·) ∈ GR, we

have λ−1
i (0) = 0 and limb↓b 1/Hi(b|I) = 0 for I ∈ I. Thus, (A.10) with the boundary conditions

b1 = . . . = bI ≡ b = v imply λ̃−1
i (0) = 0 and hence λ̃i(0) = 0. Regarding ξ̃′i(·) > 0, we note that

ξ̃i(biα) = (1 − δ)b1α + δξi(biα) from (A.10) and (12). Noting that b1α = G−1
1 [Gi(biα)] ≡ Bi(biα)

and letting biα = b, we obtain ξ̃′i(b) = (1−δ)B′
i(b)+ δξ′i(b), where B′

i(b) = gi(b)/g1[B(b)]. Hence,

ξ̃′i(b) > 0 since B′
i(b) > 0 and ξ′i(b) > 0.
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Step 3: λ̃′i(·) ≥ 1. From (A.10) and (12), λ̃−1
i [1/Hi(biα|I)] = δξi(biα) + (1 − δ)b1α − biα, i.e.

1/Hi(biα|I) = λ̃i[δξi(biα) + (1 − δ)b1α − biα]. From the structure [U, F ], we have 1/Hi(biα|I) =

λi[ξi(biα) − biα]. Thus, λi[ξi(biα) − biα] = λ̃i[δξi(biα) + (1 − δ)b1α − biα]. Differentiating with

respect to b = biα and noting that b1α = G−1
1 [Gi(biα)] ≡ Bi(biα) gives

λ̃′i(∗∗) =
ξ′i(b) − 1

δξ′i(b) + (1 − δ)B′
i(b) − 1

λ′i(∗) ≡ Ri(b)λ′i(∗), (A.11)

where the different arguments of λ′i(·) and λ̃′i(·) are indicated by * and **, respectively. Thus,

it suffices to show that Ri(·) ≥ 1 since λ′i(·) ≥ 1. We note that ξ1(b1α) = ξi(biα) = vα for all

α ∈ [0, 1] from the compatibility condition. Using b1α = Bi(biα), this gives ξ1[Bi(b)] = ξi(b) for

all b ∈ [b, b]. Differentiating gives ξ′1[Bi(b)]B′
i(b) = ξ′i(b), i.e. B′

i(b) = ξ′i(b)/ξ
′
1[Bi(b)]. Hence,

Ri(b) =
ξ′i(b) − 1

δξ′i(b) − 1 + (1 − δ) ξ′i(b)
ξ′1 [Bi(b)]

= 1 +
(1 − δ)ξ′i(b){ξ′1[Bi(b)] − 1}

δξ′i(b){ξ′1[Bi(b)] − 1} − {ξ′1[Bi(b)] − ξ′i(b)}
, (A.12)

for b ∈ [b, b]. Note that ξ′i(·) > 1 on (b, b] for every i = 1, . . . , I since differentiating (12) gives

ξ′i(b) = 1 − λ−1′

i [1/Hi(b|I)][H ′
i(b|I)/H2

i (b|I)], where λ−1′

i (·) > 0 and H ′
i(·|I) < 0 by assumption.

Hence, ξ′i(·) ≥ 1 on [b, b] by continuity. Since 1− δ > 0 and ξ′i(·) > 0, it suffices to show that the

denominator Di(b) (say) in the RHS is strictly positive for all b ∈ [b, b] and some δ ∈ [δ∗, 1].

To study the sign of Di(·) on [b, b], we note that

gj(b)
Gj(b)

=
gj(b) + o(1)

gj(b)(b− b) + o(b− b)
=

1
b− b

gj(b) + o(1)
gj(b) + o(1)

=
1

b− b
(1 + o(1)).

Thus, a Taylor expansion of 1 = λi[ξi(b) − b]
∑

j 6=i[gj(b)/Gj(b)] from (12) gives

1 =
{
λ′i(0)[ξ

′
i(b) − 1](b − b) + o(b− b)

} I − 1
b− b

(1 + o(1)) =
{
λ′i(0)[ξ

′
i(b) − 1](I − 1)

}
+ o(1).

Hence, ξ′i(b) = 1 + {1/[(I − 1)λ′i(0)]} > 1 as λ′i(·) ≥ 1. Thus, because ξ′i(·) > 1 on [b, b] , then

Di(·) > 0 on [b, b] if and only if δ > δ∗ ≡ maxb∈[b,b] δ(b), where δ(·) is continuous on [b, b] with

δ(b) ≡ ξ′1[Bi(b)] − ξ′i(b)
ξ′i(b){ξ′1[Bi(b)] − 1} =

1
ξ′i(b)

[
1 − ξ′i(b) − 1

ξ′1[Bi(b)] − 1

]
.

It remains to show that δ(·) < 1 on [b, b] so that δ∗ < 1. Clearly, δ(·) < 1 on (b, b] as ξ′i(·) > 1

on (b, b]. Moreover, at b = b, we have δ(b) = [1/ξ′i(b)]{1 − [λ′i(0)/λ
′
1(0)]} < 1.

Step 4: [Ũ, F̃ ] ∈ UI
R × FR. From the previous steps and the rationalization result given after

(13), it follows that [Ũ, F ] rationalizes G(·, . . . , ·|·). It remains to show that [Ũ, F̃ ] ∈ UI
R ×FR.

From the proof of Lemma 1, it sufffices to show that λ̃i(·) is R+1 continuously differentiable on

[0,∞) for i = 1, . . . , I. This follows from (A.11)–(A.12) and the R+1 continuous differentiablity

of λi(·) and ξi(·) as G(·, . . . , ·|·) ∈ GR. 2
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Appendix B

This appendix contains the proof of Theorem 1. As our argument is done for every I ∈ I,

hereafter we omit the dependence on I. Theorem 1 follows from Theorems B1 and B2, where

b(α) = s[v(α)] is the α-bid quantile function with α ∈ [0, 1], v(α) is the α-quantile of F (·) and

s(·) is a solution of (2) which must be strictly increasing by Lemma B1 below. Since F [v(α)] = α

implies v′(·) = 1/f [v(·)], we have b′(α) = s′(v(α))/f(v(α)). Hence, from (2), the bid quantile

function b(·) must solve

b′(α) =
I − 1
α

λ [v(α) − b(α)] for α ∈ (0, 1] with b(0) = v(0), (B.1)

where λ(·) is R + 1 continuously differentiable with λ′(·) ≥ 1 on [0,∞) and v(·) is R + 1

continuously differentiable with v′(·) > 0 on [0, 1] as U(·) ∈ UR and F (·) ∈ FR. Note that (B.1)

is ill-conditioned at α = 0. As for (2), the solutions of (B.1) are not explicit except for simple

utility functions such as CRRA. Specifically, when U(x) = x1−c/[1 − c] for 0 ≤ c < 1, it is

well-known that the equilibrium strategy exists and is unique so that the solution of (B.1) exists

and is unique, namely,

b(α) =
I − 1

(1 − c)α
I−1
1−c

∫ α

0
r

I−1
1−c

−1v(r)dr . (B.2)

Moreover, following the proof of Lemma A2 in Guerre, Perrigne and Vuong (2000), the equilib-

rium strategy in the CRRA case and hence the bid quantile function b(·) = s[v(·)] are R + 1

continuously differentiable on [v(0), v(1)] = [v, v] and [0, 1], respectively.

We now define our flow of differential equations {E(B; t) = 0; t ∈ [0, 1]}. For t ∈ (0, 1], let

Λ(x; t) =
λ(tx)
t

for x ∈ IR+, Λ(x; t) = λ′(0)x for x ∈ IR−,

V (α; t) = v(0) +
v(αt) − v(0)

t
for α ∈ [0, 1].

These two functions are extended at t = 0 by considering their limits as t ↓ 0, namely, Λ(x; 0) =

λ′(0)x for x ∈ IR, and V (α; 0) = v(0)+ v′(0)α for α ∈ [0, 1]. For every t ∈ [0, 1], note that Λ(·; t)
and V (·; t) correspond to a utility function U(x; t) = exp(

∫ x
0 [1/Λ(u; t)]du) ∈ UR and a private

value distribution F (·|·; t) ∈ FR, respectively. The flow of differential equations {E(B; t) = 0; t ∈
[0, 1]} is then defined by

B′(α; t) =
I − 1
α

Λ(V (α; t) −B(α; t); t) for α ∈ (0, 1] with B(0; t) = v(0), (B.3)

which is analogous to (B.1). Note that E(B; 0) = 0 is

B′(α; 0) =
(I − 1)λ′(0)

α
[v(0) + v′(0)α −B(α; 0)] for α ∈ (0, 1] with B(0; 0) = v(0),
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which corresponds to (B.1) for a CRRA utility function with parameter 0 ≤ c = 1− 1/λ′(0) < 1

as λ′(·) ≥ 1, and a uniform private value distribution on [v(0), v(0) + v′(0)]. In particular, a key

property is that E(B; 0) = 0 is known to admit a unique solution, namely

B(α; 0) = v(0) +
(I − 1)λ′(0)

(I − 1)λ′(0) + 1
v′(0)α

from (B.2). On the other hand, solving E(B; 1) = 0 is equivalent to solving (B.1) since Λ(x; 1) =

λ(x) and V (α; 1) = v(α). Thus, the flow of differential equations {EI(B; t) = 0; t ∈ [0, 1]} is a

path between E(B; 0) = 0 and E(B; 1) = 0.

The existence and uniqueness of the solution to E(B; 1) = 0 can be inferred from the

existence and uniqueness of the solution to E(B; 0) by a Continuation Argument given by

Proposition 6.10 in Zeidler (1985) and reproduced below as Theorem Z1. Roughly this argument

says that E(B; 1) = 0 admits a unique solution if E(B; 0) = 0 does under some regularity

conditions on the functional operator associated with the differential equation E(B; t) = 0 and

a socalled a priori condition defining the set of functions containing the potential solutions of

E(B; t) = 0. This gives us

Theorem B1: If [U,F ] ∈ UR ×FR, then for every I ∈ I
(i) the differential equation (B.1) has a unique solution b(·), which is strictly increasing and

continuously differentiable over [0, 1] with b(α) < v(α) for all α ∈ (0, 1],

(ii) s(·) = b(F (·)) is the unique solution of the differential equation (2) with initial condition

s(v(0)) = v(0). Moreover, this solution is strictly increasing and continuously differentiable

on [v(0), v(1)], with s(v) < v for all v ∈ (v(0), v(1)], s′(v) > 0 for all v ∈ [v(0), v(1)] and

s′(v(0)) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] < 1.

A main advantage of our functional approach is that it also delivers the smoothness of the

equilibrium strategy. As above, we first study the differentiability of the bid quantile function

b(·) on [0, 1] building on an Implicit Functional Theorem 4.B in Zeidler (1985) and reproduced

below as Theorem Z2. This theorem is applied to the flow of differential equations {E(B; t) =

0; t ∈ [0, 1]}.

Theorem B2: If [U,F ] ∈ UR ×FR, then for every I ∈ I
(i) the unique solution b(·) of (B.1) admits R+ 1 continuous partial derivatives on [0, 1], while

b′(α) has R+ 1 continuous partial derivatives on (0, 1],

(ii) the unique solution s(·) of the differential equation (2) with initial condition s(v(0)) = v(0)

admits R+ 1 continuous partial derivatives on [v(0), v(1)].
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To prove Theorems B1–B2 requires to establish some properties so as to satisfy the conditions

of the Continuation Argument Theorem and the Implicit Functional Theorem. These properties

follow from the next series of lemmas and corollaries, most of which are used to check the

conditions of either theorem. In what follows, π(k)(α; t), V (k)(α; t) and Λ(k)(x; t) denote the kth

derivatives of π(α; t), V (α; t) and Λ(x; t) with respect to α, α and x, respectively.

We first establish some properties that potential solutions to (2) must satisfy.

Lemma B1: If [U,F ] ∈ UR × FR, then for every I ∈ I solutions s(·) of (2) with boundary

condition s(v(0)) = v(0), if any, are such that

(i) s(·) is continuously differentiable on [v(0), v(1)],

(ii) s(v) < v for all v ∈ (v(0), v(1)] and s′(v) > 0 for all v ∈ [v(0), v(1)] with s′(v(0)) =

(I − 1)λ′(0)/[(I − 1)λ′(0) + 1] < 1.

Proof of Lemma B1: Fix I ∈ I. Let λ̃(x) = λ(x) for x ≥ 0, and λ̃(x) = λ′(0)x for x < 0.

Note that λ̃(·) is strictly increasing and continuously differentiable over IR because λ′(·) ≥ 1 on

IR+. We establish (i) and (ii) for the potential solutions of the “extended” differential equation

s′(v) = (I − 1)
f(v)
F (v)

λ̃ (v − s(v)) for v ∈ (v(0), v(1)] with s(v(0)) = v(0). (B.4)

Since λ(·) and λ̃(·) coincide over IR+, a solution of (2) with s(v(0)) = v(0) is also a solution of

(B.4). Conversely, a solution of (B.4) satisfying s(v) < v for all v ∈ (v(0), v(1)] is a solution

of (2) with s(v(0)) = v(0). In Step 2 we show that potential solutions of (B.4) must satisfy

s(v) < v for all v ∈ (v(0), v(1)]. Hence, s(·) is a solution of (2) with s(v(0)) = v(0) if and only

if it is a solution of (B.4). The desired result then follows.

Step 1: Proof of (i) for solutions of (B.4). Solutions s(·) of (B.4) are continuous on [v(0), v(1)]

and continuously differentiable on (v(0), v(1)]. Thus, it suffices to show the existence of s′(v(0))

with limv↓v(0) s
′(v) = s′(v(0)). For v ∈ (v(0), v(1)], let

Ψ(v) = (I − 1)
f(v)(v − v(0))

F (v)
λ̃(v − s(v))
v − s(v)

, r(v) = exp

(
−
∫ v(1)

v

Ψ(u)
u− v(0)

du

)
.

Also, let Ψ(v(0)) = (I − 1)λ′(0) and r(v(0)) = 0. Thus, Ψ(·) is continuous and strictly positive

on [v(0), v(1)] since [U,F ] ∈ UR × FR. Hence, 0 < r(·) < 1 on (v(0), v(1)]. Moreover, Ψ(v)
v−v(0) =

Ψ(0)+o(1)
v−v(0) when v ↓ v(0). Thus, limv↓v(0) r(v) = 0 and r(·) is continuous on [v(0), v(1)].

Now, (B.4) can be written as s′(v) = Ψ(v) v−s(v)
v−v(0) for v ∈ (v(0), v(1)] with s(v(0)) = v(0), i.e.

(v−v(0))s′(v)+Ψ(v)(s(v)−v(0)) = Ψ(v)(v−v(0)) for v ∈ (v(0), v(1)] with s(v(0)) = v(0). (B.5)

36



Letting C(v) = r(v)[s(v)−v(0)] yields, for v ∈ (v(0), v(1)], C ′(v) = r(v)Ψ(v) s(v)−v(0)
v−v(0) +r(v)s′(v),

so that (B.5) gives C ′(v) = r(v)Ψ(v). Thus, C(v) = C0+
∫ v
v(0) r(u)Ψ(u)du, where C0 = 0 because

C(v(0)) = 0. Hence, the potential solutions of (B.4) satisfy

s(v) = v(0) +
∫ v

v(0)

r(u)
r(v)

Ψ(u)du .

But for v(0) < u ≤ v ≤ v(1),

r(u)
r(v)

= exp
(
−
∫ v

u

Ψ(v(0)) + o(1)
x− v(0)

dx

)
= exp

(
−[Ψ(v(0)) + o(1)] ln

v − v(0)
u− v(0)

)

=
(
u− v(0)
v − v(0)

)[Ψ(v(0))+o(1)]

.

It follows that

s(v) − v(0) =
∫ v

v(0)

(
u− v(0)
v − v(0)

)(Ψ(v(0))+o(1))

[Ψ(v(0)) + o(1)] du

=
Ψ(v(0))

Ψ(v(0)) + 1
(v − v(0)) (1 + o(1)) ,

showing that s(v(0)) = v(0) as desired. Moreover, s(·) is differentiable at v(0) with s′(v(0)) =

(I−1)λ′(0)/[(I−1)λ′(0)+1] using Ψ(v(0)) = (I−1)λ′(0). On the other hand, s′(v) = Ψ(v) v−s(v)
v−v(0)

for v > v(0) gives

lim
v↓v(0)

s′(v) = lim
v↓v(0)

Ψ(v)
(

1 − s(v) − v(0)
v − v(0)

)
= Ψ(v(0))

(
1 − s′(v(0))

)
= s′(v(0))

as desired.

Step 2: Proof of (ii) for solutions of (B.4). We first prove that s(v) < v for v ∈ (v(0), v(1)]

by contradiction. Observe that 0 < s′(v(0)) < 1. It follows that s(v) < v for v > v(0) close

enough to v(0). Suppose that there is a v∗ in (v(0), v(1)] such that s(v) < v for v ∈ (v(0), v∗)

and s(v∗) = v∗, so that s′(v∗) = 0 by (B.4). Since R ≥ 1, differentiating (B.4) at v∗ yields

s′′(v∗)
I − 1

=
∂

∂v

(
f(v∗)
F (v∗)

)
λ(v∗−s(v∗)) +

f(v∗)
F (v∗)

λ′(v∗−s(v∗))
(
1−s′(v∗)

)
=
f(v∗)
F (v∗)

λ′(0) > 0.

Hence, a second-order Taylor expansion for ε > 0 small enough yields s(v∗ − ε) = v∗ + [s′′(v∗) +

o(1)]ε2/2. Thus, s(v∗− ε) > v∗ > v∗− ε for ε > 0 small enough, contradicting s(v∗− ε) < v∗− ε.
We next show that s′(v) > 0 for v ∈ [v(0), v(1)]. This follows immediately from s′(v(0)) =

(I − 1)λ′(0)/[(I − 1)λ′(0) + 1] and (B.4) using s(v) < v for v ∈ (v(0), v(1)]. 2

The next result, which follows from Lemma B1, relates the potential solutions of (2) to those

of (B.1). It also provides some properties of the bid quantile function b(·).
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Corollary B1: If [U,F ] ∈ UR ×FR, then for every I ∈ I
(i) b(·) solves (B.1) if and only if b(α) = s(v(α)), where s(·) is a solution of (2) with s(v(0)) =

v(0). Equivalently, s(·) solves (2) with s(v(0)) = v(0) if and only if s(v) = b(F (v)) where b(·) is

a solution of (B.1).

(ii) Solutions b(·) of (B.1), if any, are continuously differentiable on [0, 1], with b′(v) > 0 for all

α ∈ [0, 1] and b(α) < v(α) for all α ∈ (0, 1].

Proof of Corollary B1: Note that v(α) is continuously differentiable on [0, 1] with v′(α) =

1/f(v(α)) > 0 as v(α) = F−1(α). For part (i), setting b(α) = s(v(α)) yields b′(α) = s′(v(α))/

f(v(α)). So, if b(·) solves (B.1), then the change of variable α = F (v) yields that s(·) solves

(2) with the desired initial condition. Conversely, if s(·) solves (2) with s(v(0)) = v(0), then

elementary algebra yields that b(·) solves (B.1). The second assertion of (i) follows similarly.

Part (ii) follows from Lemma B1 with b(α) = s(v(α)). 2

Instead of working with B(·; t), it is more convenient to make the change of variable π(·; t) =

V (·; t) − B(·; t), where V (·; t) is continuously differentiable on [0, 1]. This gives the companion

flow of differential equations {Ẽ(π; t) = 0; t ∈ [0, 1]} defined by

π′(α; t) = V ′(α; t) − I − 1
α

Λ(π(α; t); t) for α ∈ (0, 1] with π(0; t) = 0. (B.6)

The next result, which also follows from Lemma B1, provides a set Σ in which the potential

solutions of (B.6) lies. Hereafter, we let C0
1 be the set of functions π(·) from [0, 1] to IR that are

continuously differentiable on [0, 1] and satisfy π(0) = 0.

Corollary B2: Let [U,F ] ∈ UR × FR. For every I ∈ I define v̄′ = maxα∈[0,1] v
′(α), where

0 < v̄′ < ∞, and let Σ =
{
π(·) ∈ C0

1; 0 < π(α) < v̄′ for α ∈ (0, 1], π′(0) > 0
}
. Then, for any t

in [0, 1], solutions π(·; t) of the differential equation Ẽ(π; t) = 0, if any, are in Σ.

Proof of Corollary B2: Fix t ∈ [0, 1]. For α ∈ [0, 1], note that V ′(α; t) = v′(αt) and

V (0, t) = v(0). Hence, 0 ≤ V (α; t) = v(0) +
∫ α
0 v′(ut)du ≤ v(0) + supx∈[0,1] v

′(x) = v(0) + v̄′.

Moreover, V (·; t) is R+1 continuously differentiable on [0, 1], while Λ(·; t) has the same properties

as λ(·). Thus, (B.3) is similar to (B.1), thereby yielding that B(·; t) is continuously differentiable

on [0, 1] with v(0) < B(α; t) < V (α; t) for all α ∈ (0, 1] by Corollary B1-(ii). Now, π(·; t) =

V (·; t)−B(·; t) solves (B.6) if and only if B(·; t) solves (B.3). Thus, π(·; t) ∈ C0
1 and 0 < π(α; t) =

V (α; t) − B(α; t) < V (α; t) − v(0) ≤ v̄′ for α ∈ (0, 1]. Moreover, π′(0; t) = V ′(0; t) − B′(0; t) =

v′(0)− s′(v(0); t)v′(0) > 0 since v′(0) > 0 and s′(v(0); t) = (I−1)Λ′(0; t)/[(I −1)Λ′(0; t)+1] < 1

by Lemma B1-(ii), where Λ′(0; t) = λ′(0) > 0. 2
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Next, we establish the smoothness of the auxiliary functions Λ(x; t) and V ′(α; t).

Lemma B2: If [U,F ] ∈ UR ×FR, then for every I ∈ I
(i) Λ(x; t) is R continuously differentiable in (x, t) ∈ IR+ × [0, 1], Moreover, (1/x)∂rΛ(x; t)/∂tr

is continuous in (x, t) ∈ IR+ × [0, 1] for r = 0, . . . , R,

(ii) V ′(α; t) is R continuously differentiable in (α, t) ∈ [0, 1]2.

Proof of Lemma B2: Let 0 < t ≤ 1. For x > 0 the Liebnitz-Newton formula yields

∂rΛ(x; t)
∂tr

=
∂r

∂tr

(
λ(tx)
t

)
=

r∑

j=0

r!
j!(r−j)!

∂jλ(tx)
∂tj

∂r−j

∂tr−j

(
1
t

)
=

(−1)rr!
tr+1

r∑

j=0

λ(j)(tx)
j!

(−tx)j

for 0 ≤ r ≤ R. On the other hand, a Taylor expansion of λ(0) = λ(tx− tx) = 0 around tx with

integral remainder (see e.g Zeidler (1985, p.77)) shows that

0 =
r∑

j=0

λ(j)(tx)
j!

(−tx)j +
(−tx)r+1

r!

∫ 1

0
(1 − u)rλ(r+1) (tx− utx) du.

Hence, using the change of variable ν = 1 − u, we obtain for (x, t) ∈ (∞) × (0, 1]

1
x

∂rΛ(x; t)
∂tr

= xr
∫ 1

0
νrλ(r+1) (νtx) dν,

∂r1+r2Λ(x; t)
∂xr1∂tr2

=
∂r1

∂xr1

(
xr2+1

∫ 1

0
νr2λ(r2+1) (νtx) dν

)
,

where 0 ≤ r1 + r2 ≤ R. Using the Lebesgue Dominated Convergence Theorem and the R + 1

continuous differentiability of λ(·) on IR+, it can be checked that the above two functions are

continuous on IR+ × [0, 1], thereby establishing part (i). Part (ii) follows from V ′(α; t) = v′(αt)

for (α, t) ∈ [0, 1]2, where v′(·) is R continuously differentiable on [0, 1] because F (·|·) ∈ FR. 2

We now introduce some functional operators associated with the differential equation (B.6).

Let C0 be the set of functions π(·) from [0, 1] to IR that are continuous on [0, 1]. As is well-

known, C0 is a Banach space equipped with the norm ‖π‖0 = supα∈[0,1] |π(α)|. Similarly, C0
1

as defined earlier is a Banach space equipped with the norm ‖π‖1 = maxr=0,1 supα∈[0,1] |π(r)(α)|
= supα∈[0,1] |π(1)(α)|.26 In particular, Σ is an open subset of C0

1 since the open ball V(π; ε) =

{ζ ∈ C0
1; ‖ζ − π‖1 < ε} ⊂ Σ for any π ∈ Σ and ε = επ small enough. Moreover, for every

t ∈ [0, 1], it can be checked that Λ(π(α); t)/α and V ′(α; t) are continuous in α ∈ [0, 1] whenever

π(·) ∈ C0
1. Thus, for every t ∈ [0, 1], we can view the solutions of the differential equation (B.6)

as the zeros of the functional operator E(·; t) from C0
1 to C0 (see Lemma B3-(i) below), where

E(·; t) : π(·) → E(π; t)(α) = π(1)(α) +
I − 1
α

Λ (π(α); t) − V ′(α; t) , α ∈ [0, 1] .

26To see that ‖π‖1 = ‖π(1)‖0, note that |π(α)| =
∣∣∫ α

0
π(1)(u)du

∣∣ ≤ supu∈[0,1] |π(1)(u)| for all α ∈ [0, 1].
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In what follows Er1r2(π; t) = ∂r1+r2E(π; t)/∂πr1∂tr2 denotes the Fréchet partial derivatives of

E(π;α) (see e.g. Zeidler, 1985), which are linear operators from (C0
1)

r1×IRr2 . For a linear opera-

tor L : C1 7→ C0 with Banach spaces Ci equipped with norms Ni, ρ(L) = supx∈C1,N1(x)=1N0(L(x))

is the operator norm of L.

Lemma B3: If [U,F ] ∈ UR ×FR, then for every I ∈ I
(i) E(π; t) ∈ C0 for all (π, t) ∈ C0

1 × [0, 1],

(ii) E(π; t) is R Fréchet differentiable in (π, t) ∈ Σ × [0, 1] with Fréchet partial derivatives

Er1r2(π; t), 0 ≤ r1 + r2 ≤ R that are uniformly continuous over Σ× [0, 1],

(iii) The Fréchet partial derivative E10(π; t) at (π, t) ∈ Σ× [0, 1], maps η ∈ C0
1 to E10(π; t)(η) ∈

C0 defined as E10(π; t)(η)(α) = η(1)(α)+ I−1
α Λ(1)(π(α); t)η(α), for α ∈ [0, 1]. Moreover, E10(π; t)

is one-to-one (bijective) from C0
1 to C0 with an inverse of bounded operator norm uniformly in

(π, t) ∈ Σ× [0, 1].

Proof of Lemma B3: Throughout, fix I ∈ I.

(i) Fix (π, t) ∈ C0
1 × [0, 1]. It is sufficient to study Λ(π(·); t), which is clealry continuous on

(0, 1]. As α ↓ 0, π(α) = π′(0)α + o(α) since π(0) = 0 by definition of C0
1. For t > 0, it follows

that Λ(π(α); t)/α = λ(tπ(α))/(αt) = λ′(0)π′(0) + o(1), the last expansion being also true for

t = 0. Thus, E(π; t) ∈ C0.

(ii) We first consider the Gâteaux derivatives of E(π; t). From e.g. Zeilder (1985) these are

obtained in two steps: In a first step ∂r1+r2E (π + uη; t) /∂ur1∂tr2 is computed, where η ∈ C0
1,

and in a second step the term ηr1 arising in this expression is changed into η1 × · · · × ηr1 , where

the ηr are in C0
1. For 1 ≤ r1 + r2 ≤ R and η1, . . . , ηR in C0

1, the Gâteaux derivatives are

E10(π; t)(η1)(α) = η
(1)
1 (α) + (I − 1)Λ(1) (π(α); t)

η1(α)
α

, (B.7)

E0r2(π; t)(α) =
I − 1
α

∂r2Λ(π(α); t)
∂tr2

− ∂r2V ′(α; t)
∂tr2

, for r2 ≥ 1,

Er1r2(π; t)(η1, . . . , ηr1)(α) = (I − 1)
∂r1+r2Λ (π(α); t)

∂xr1∂tr2

η1(α)
α

η2(α) × · · · × ηr1(α), otherwise.

Note that η1(α)/α belongs to C0 since η1 ∈ C0
1. It follows that Er1r2(π; t)(η1, . . . , ηr1) ∈ C0 for

1 ≤ r1 + r2 ≤ R by Lemma B2.

We now show that E(π; t) is R Fréchet continuously differentiable over Σ×[0, 1], with Fréchet

partial derivatives Er1r2(π; t). Note that E0r2(π; t) is uniformly continuous over Σ × [0, 1] by

Lemma B2. Thus, from Proposition 4.8 in Zeilder (1985), Part (ii) is proven if for r1 ≥ 1

(ii.a) The map (η1, . . . , ηr1) → Er1r2(π; t)(η1, . . . , ηr1) is a continuous multilinear

operator,
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(ii.b) The map (π, t) → Er1r2(π; t) is uniformly continuous over Σ× [0, 1].

We show these for (r1, r2) = (1, 0) only, the other cases being similar. Recall that if π ∈ Σ, then

π(·) takes its values in [0, v̄′], which is compact. For (ii.a), we have to show that the operator

norm ρ1
(
E10(π; t)

)
≡ supη1∈C0

1,‖η1‖1=1

∥∥E10(π; t)(η1)
∥∥
0 < ∞ for all (π, t) ∈ Σ × [0, 1]. Since

‖η1(α)/α‖0 ≤ ‖η1‖1, it follows from (B.7) and Taylor inequality that

∥∥∥E10(π; t)(η1)
∥∥∥
0

=
∥∥∥∥η

(1)
1 (α) + (I − 1)Λ(1) (π(α); t)

η1(α)
α

∥∥∥∥
0

≤ ‖η1‖1

(
1 + (I − 1) sup

(x,t)∈[0,v̄′ ]×[0,1]

∣∣∣Λ(1)(x; t)
∣∣∣
)
,

so that ρ1
(
E10(π; t)

)
<∞ by Lemma B2. For (ii.b), we have for any (π0, t0) and (π, t) in Σ×[0, 1]

∥∥∥E10(π0; t0)(η1) −E10(π; t)(η1)
∥∥∥
0

= (I − 1)
∥∥∥∥
(
Λ(1) (π0(α); t0) − Λ(1) (π(α); t)

) η1(α)
α

∥∥∥∥
0

≤ (I − 1)‖η1‖1

∥∥∥Λ(1) (π0(α); t0) − Λ(1) (π(α); t)
∥∥∥
0
.

It follows from Lemma B2 that ρ1

(
E10(π0; t0) −E10(π; t)

)
can be made arbitrarily small by

choosing ‖π0 − π‖1 and |t0 − t| small enough.

(iii) Fix (π, t) in Σ× [0, 1] and abbreviate E10(π; t) into E1. The first part of (iii) has been

established in (B.7). To show that this operator is one-to-one from C0
1 to C0, consider ζ in C0.

Finding an η ∈ C0
1 with E1(η) = ζ amounts to solving the linear differential equation

E1
ζ : η(1)(α) + (I − 1)Λ(1) (π(α); t)

η(α)
α

= ζ(α) with η(0) = 0. (B.8)

Proceeding as in Step 1 of the proof of Lemma B1 yields that the unique candidate solution is

ηζ(α) =
∫ α

0
ζ(u)

R(u)
R(α)

du where R(α) = exp

(
−(I − 1)

∫ 1

α

Λ(1)(π(u); t)
u

du

)
.

Note that Λ(1)(x; t) = λ′(tx) ≥ 1 and Λ(1)(π(u); t)/u = λ′(0)/u +O(1) when u ↓ 0. Thus,

0 ≤ R(u)
R(α)

= exp

(
−(I − 1)

∫ α

u

Λ(1)(π(τ); t)
τ

dτ

)
≤ 1 for 0 ≤ u ≤ α and lim

α→0
R(α) = 0.

It follows that ηζ is defined and continuously differentiable over (0, 1]. Observe now that |ηζ(α)| ≤
α‖ζ‖0 so that setting ηζ(0) = 0 gives a continuous function over [0, 1]. For differentiability at 0,

note that for 0 ≤ u ≤ α we have (lnα− lnu)/(α − u) → +∞ as α ↓ 0. Thus, as α ↓ 0 we have

R(u)
R(α)

= exp
[
−(I − 1)

∫ α

u

(
λ′(0)
τ

+O(1)
)
dτ

]
= exp

(
−(I − 1)λ′(0) ln

α

u
+O(α− u)

)
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= exp
(
−(I − 1)λ′(0) ln

α

u
+

α− u

lnα− lnu
O(1)

)
=
(
u

α

)(I−1)λ′(0)

(1 + o(1)) ,

ηζ(α) =
∫ α

0
(ζ(0) + o(1))

(
u

α

)(I−1)λ′(0)

(1 + o(1)) du =
ζ(0)

(I − 1)λ′(0) + 1
α+ o(α).

Hence, ηζ is differentiable at 0 with η
(1)
ζ (0) = ζ(0)/[(I − 1)λ′(0) + 1]. To check that η(1)

ζ is

continuous at 0, observe that (B.8) gives for α ↓ 0

η
(1)
ζ (α) = ζ(0) − (I − 1)

(
λ′(0) + o(1)

) ( ζ(0)
(I − 1)λ′(0) + 1

+ o(1)
)

= η
(1)
ζ (0) + o(1).

Hence, ηζ ∈ C0
1 . Thus, E1 : C0

1 7→ C0 is one-to-one with
[
E1
]−1 (ζ) = ηζ for any ζ ∈ C0.

Lastly, recall that |ηζ(α)| ≤ α‖ζ‖0 and 0 ≤ π(α) ≤ v̄′ for any π ∈ Σ. This gives
∥∥∥∥
[
E1
]−1

(ζ)
∥∥∥∥
1

=
∥∥∥η(1)

ζ

∥∥∥
0

=
∥∥∥∥ζ(α) − (I − 1)Λ(1)(π(α); t)

η(α)
α

∥∥∥∥
0

≤ ‖ζ‖0 + (I − 1) sup
(x,t)∈[0,v̄′ ]×[0,1]

λ′(tx)‖ζ‖0 =

(
1 + (I − 1) sup

x∈[0,v̄′ ]
λ′(x)

)
‖ζ‖0.

Hence the operator norm ρ
([

E1(π; t)
]−1
)

is bounded uniformly in (π, t) ∈ Σ× [0, 1]. 2

We now prove Theorems B1 and B2. To prove Theorem B1, we use the following continuation

argument in Zeidler (1985, Proposition 6.10).

Theorem Z1 (Continuation argument): Let C1 and C0 be some Banach spaces. For π ∈ C1,

let V(π; ε) denote the ε-neighborhood of π in C1. Suppose that

(i) The map (π, t) ∈ C1 × [0, 1] 7→ E(π; t) ∈ C0 is continuous,

(ii) (A priori condition) There exists an open subset S of C1 and a number ε > 0 such that, if

(πt, t) verifies E(πt; t) = 0, then V(πt; ε) ⊂ S for all t ∈ [0, 1],

(iii) For any t ∈ [0, 1], the operator E has a Fréchet derivative Eπ with respect to π ∈ S. The

operators (π, t) 7→ E(π; t) and (π, t) 7→ Eπ(π; t) are uniformly continuous over S × [0, 1],

(iv) The linear operator η ∈ C1 7→ Eπ(π; t)(η) ∈ C0 is one-to-one, and for some constant C,

ρ(Eπ(π; t)−1) ≤ C for all (π, t) ∈ S × [0, 1].

If E(π; 0) = 0 has a unique solution π0, then E(π; 1) = 0 has a unique solution π1.

Proof of Theorem B1: Fix I ∈ I. Part (ii) follows from Lemma B1, Corollary B1 and part

(i). Thus, it suffices to show the latter. In view of Corollary B1-(ii), it remains to show the

existence and uniqueness of the solution of (B.1), i.e E(B; 1) = 0 or equivalently Ẽ(π; 1) = 0.

We apply Theorem Z1, where C1 = C0
1, C0 = C0, and S = Σ. Lemma B3 shows that conditions

(i), (iii) and (iv) of Theorem Z1 hold. Hence, it remains to check condition (ii).
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We begin with some inequalities. Let v̄′ be as in Corollary B2 and define v′ = infα∈[0,1] v
′(α),

λ′ = infx∈[0,v̄′]
λ(x)

x , λ̄′ = supx∈[0,v̄′]
λ(x)

x , where 0 < v′ ≤ v̄′ < ∞ and 1 ≤ λ′ ≤ λ̄′ < ∞ because

[U,F ] ∈ UR × FR. Recall that V ′(α; t) = v′(αt) for (α, t) ∈ [0, 1]2, while π(·) ∈ Σ takes its

values in [0, v̄′). Thus, for any (α, t) ∈ [0, 1]2 and π(·) ∈ Σ we have v′ ≤ V ′(α; t) ≤ v̄′ and

λ′π(α) ≤ Λ(π(α); t) ≤ λ̄′π(α) since Λ(x; t) = λ(xt)/t for (x, t) ∈ IR+ × (0, 1], Λ(x; 0) = λ′(0)x

for x ∈ IR+ and λ′ ≤ λ′(0) ≤ λ̄′. For t ∈ [0, 1], let π(·; t) be a solution of Ẽ(π; t) = 0 so that

π(·) ∈ Σ by Corollary B2. Since Ẽ(π; t) = 0 writes π′(α) + (I − 1)Λ(π(α); t)/α = V ′(α; t), the

above inequalities yields, for all (α, t) ∈ [0, 1]2,

v′ ≤ π′(α; t) + (I − 1)λ̄′
π(α; t)
α

and π′(α; t) + (I − 1)λ′
π(α; t)
α

≤ v̄′ with π(0; t) = 0.

Setting C̄(α; t) = π(α; t)α(I−1)λ̄′
so that C̄ ′(α; t) = α(I−1)λ̄′

[π′(α; t) + (I − 1)λ̄′π(α; t)/α] yields

v′α(I−1)λ̄′ ≤ C̄ ′(α; t) from the first differential inequality. Thus, integrating and using C̄(0; t) = 0

gives v′α/[(I−1)λ′+1] ≤ π(α) for all (α, t) ∈ [0, 1]2. Setting C(α; t) = π(α; t)α(I−1)λ′
, proceeding

similarly with the second differential inequality, and combining yield

v′α

(I − 1)λ̄′ + 1
≤ π(α; t) ≤ v̄′α

(I − 1)λ′ + 1
< v̄′ for all (α, t) ∈ [0, 1]2. (B.9)

We now check condition (ii) of Theorem Z1. We have to show that V(π(·; t); ε) ⊂ Σ for ε > 0

small enough and all t ∈ [0, 1]. Recall that the neighborhood V(π(·; t); ε) of π(·; t) in C0
1 consists

of functions ζ(·) ∈ C0
1 with supα∈[0,1] |ζ ′(α) − π′(α; t)| < ε. In particular, ζ ′(0) > π′(0; t) − ε,

where π′(0; t) = V ′(0; t)−B′(0; t) = v′(0)[1−s′(v(0); t)] = v′(0)/[(I−1)λ′(0)+1] > 0 by Lemma

B1. Moreover, integrating and using π(0; t) = ζ(0) = 0 give π(α; t) − εα < ζ(α) < π(α; t) + εα

for all α ∈ [0, 1] . Hence, for ε > 0 small enough, ζ ′(0) > π′(0; t) − ε > 0, while (B.9) yields

0 <
(

v′

(I − 1)λ̄′ + 1
− ε

)
α < ζ(α) <

(
v̄′

(I − 1)λ′ + 1
+ ε

)
α < v̄′ for all α ∈ (0, 1],

for all t ∈ [0, 1]. That is, there exists ε > 0 such that V(π(·; t); ε) is a subset of Σ for all t ∈ [0, 1]

and the a priori condition (ii) of Theorem Z1 is proven. 2

To prove Theorem B1, we use the following Implicit Functional Theorem in Zeidler (1985,

Theorem 4.B).

Theorem Z2 (Implicit Functionial Theorem): Let (π0, t0) be in C1 × [0, 1], where C1 is

a Banach space, and consider an R continuously Fréchet differentiable operator E(·, ·) defined

on a neighborhood of (π0, t0) with values in a Banach space C0 such that E(π0, t0) = 0. If the

Fréchet derivative Eπ(π, t) of E(π, t) with respect to π is such that Eπ(π0, t0) is one-to-one, then
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there exists a neighborhood O(t0) of t0 such that, for t ∈ O(t0), the equation E(π, t) = 0 has a

unique solution π(t), which is R continuously differentiable on O(t0).

Proof of Theorem B2: Fix I ∈ I. Part (ii) follows from part (i) since s(v) = b(F (v)) by

Corollary B1-(ii) and F ∈ FR. Thus, it suffices to show part (i). Let C1 = C0
1 and C0 = C0.

For any t0 ∈ [0, 1], note that Ẽ(π; t0) = 0 has a unique solution π0(·) = π(·; t0) as it suffices to

consider the flow of differential equations {Ẽ0(π;u) = 0;u ∈ [0, 1]}, where Ẽ0(π;u) ≡ Ẽ(π;ut0)

and to follow the proof of Theorem B1-(i) with S = Σ. As π0 ∈ Σ by Corollary B2, while

Σ × [0, 1] is a neighborhood of (π0, t0), Lemma B3 and Theorem Z2 yield that π(t) = π(·; t) is

R continuously differentiable with respect to t in a neighborhood O(t0) of t0, and hence at t0.

As t0 is arbitrary in [0, 1], then π(·; t) is R continuously differentiable in t ∈ [0, 1].

For t ∈ (0, 1], note that π(α; t) = [v(αt) − b(αt)]/t for α ∈ [0, 1], where b(·) is the solution

of (B.1). To see this, it suffices to verify that such a π(·; t) verifies (B.6) using π′(α; t) =

v′(αt) − b′(αt), V ′(α; t) = v′(αt), Λ(x; t) = λ(tx)/t for x ≥ 0, and (B.1). Similarly, for t = 0,

let π(α; 0) = [v′(0) − b′(0)]α for α ∈ [0, 1], which can be seen to verify (B.6). In particular,

π′(1; t) = v′(t) − b′(t) for t ∈ [0, 1]. Thus, using v′(t) = V ′(1; t) and (B.6) at α = 1 give b′(t) =

(I − 1)Λ(π(1; t); t) for t ∈ [0, 1], where Λ(·; ·) is R continuously differentiable on IR+ × [0, 1] by

Lemma B2-(i) and π(1; ·) is R continuously differentiable on [0, 1]. Hence, b′(·) is R continuously

differentiable on [0, 1] implying that b(·) is R+ 1 continuously differentiable on [0, 1] as desired.

Lastly, using (B.1) shows that b′(·) is R+ 1 continuously differentiable on (0, 1]. 2
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Figure 1: Identification with s(·) increasing in competition

υυ(α0)υ(α1)υ(α2)υ(α3)υ υ

b

s1(·)

s2(·)

λ−1[R2(α0)]

∆b(α0)

λ−1[R1(α0)]

45



Figure 2: Identification with s(·) nonincreasing in competition, case (i)
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Figure 3: Identification with s(·) nonincreasing in competition, case (ii)
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